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I. INTRODUCTION

A. Problem Statement

For that large class of electrical problems which can be modeled as
lumped networks, Kirchhoff's voltage law-—which states fhat the sum of
the voltages around any closed loop is zero--and Kirchhoff's current law--
which in its generalized form states that the net cur;ent outflow from a
point or finite group of points is zero--are very fundamental network
properties which are the foundations of network analysis. If the voltage-
current relationships are known for every branch of the network, the use
of the Kirchhoff equations results in the formulation of equations which
completely describe the network. Two procedures have been developed for
systematically applying the Kirchhoff laws to a network. These two, which
differ essentially only in the order in which the Kirchhoff laws are
utilized,are known as the loop current method and the node voltage method.
For most networks there are many possible choices of independent sets of
Kirchhoff equations, hence there are many ways to formulate ioop and node
equations. The purpose of this investigation is to find formulation pro-
cedures which lead to an independent set of network equations which are
optimum or near-optimum in the sense of being maxiﬁally uncoupled. Since
the loop current and node voitage formulaﬁions are so interrelated, atten-
tion will be restricted to the node voltage formulabtion only, with the
expectation that similar results could be found for the loop current
formulation.

The problem to be investigatéd, simply stated, is this. Given an

interconnection disgram for a lumped electrical network, how can one write



an independent set of equations in which the variables are linear combina-
tions of node voltages in a manner such that the number of zeros in the
coefficient matrix is maximized? DNote that the problem differs from a
normal co-ordinate (eigenvector) problem in that it matters only whether
or not there is a current path between a pair of nodes, with no use being
made of the admittance value of this path. The class of electrical net-
works to which this investigation applies is limited to those finite
lumped networks which can be represented as an interconnection of two-
terminal elements having no closed loops of infinite admittance elements
(short circuits). The practical effect of these restrictions is to rule
out unsymmetrical mutual couplings and perfectly coupled transformers.

The method of attack on the problem is to decompose the coefficient matrix
of the nodal equations into constituent matrices by the use of linear

graph theory.

B. Establishing the Graph Model of the Problem

Busacker and Saaty (1) formally define an abstract directed graph to
consist of a nonempty set V, a set E disjoint from V, and a mapping of E
into the cartesian product VxV. Since a graph is an abstract entity, a
correspondence must be chosen between its elements and the elements of the
physical problem under consideration. The correspondence chosen is to
relate the nodes of the electrical network to the elements of the set V
and the current paths of the network to the elements of the set E. This
choice is a very simple and natural one because the geometric graph
isomorphic to the abstract graph defined above has the appearance of a

skeleton of the electrical network. This particular choice of



correspondence is the reason that the class of electrical networks studied
was restricted to those reducible to an interconnection of two-terminal
elements in a manner that no closed loops of infinite admittance elements
result. Parallel circuit elements will be considered to be combined into
a single current path, so the corresponding graph will have no parallel
edges. Also, self-loops have no meaning in an electrical circuit and will
not appear in the corresponding graph, thus the graph to be uséd is re-
stricted to have no parallel edges and no self-loops. Busacker and Saaty
(1) term such a graph a "simple" directed graph.

In order that a consistent reference convention be followed in relat-
ing the voltage and current in the individual two-terminal elements, it is
necessary to use a directed rather than a non-directed graph.A Since the
network has been restricted to be composed of two-terminal componehts only,
every pair of vertices which are joined by a directed edge with admittance
weight yij are also joined by an oppositely directed edge of weight _yij'
Note that the edge orientations have nothing to do with direction of cur-
rent flow but simply determine the signs of the weight factors to be used
in a graph operation such as describing a path or disconnecting set. Since
the graph to be used contains oppositely directed edges with weights of
equal magnitude but opposite sign between every adjacent pair of vertices,
it is conventional in the electrical engineering literature to draw the
geometric graph with a single directed edge joining adjacent vertices.

It is then understood that in an operation with an orientation confluent
to the edge orientation the weight factor is used with its given sign, and

in an operation with orientation counterfluent to the edge orientation,



the weight factor is used with the negative of its given sign.

A graph is said to be separable if it contains an articulation poipt.
An articulation point of a connected graph G is a vertex such that the
subgraph obtained by deleting this vertex and all edges incident upon it
from G is disconnected. Separable graphs and disconnected graphs (includ-
ing isolated vertices) are not very interesting from a nodal equation
point of view because the formulation of equations for each separated or
separable part can be handled as a problem not related to the other graph
parts. Restricting the problem to connected nonseparable graphs is not
really a restriction, however, since then an optimum overall matrix can
always be written as a direct sum matrix containing the optimum matrices
for each separable or separated part.

The major graph-theoretic concept of use in this investigation is
that of a vertex segregation or seg. Some of the properties of segs are
discussed in Reed (3) and in Reed (4). A seg is defined as follows. Given
a graph with the set of vertices V, partition the vertices into two all-
inclusive mutually-exclusive non-empty sets w and Ww. Then the set of all
edges joining a vertex of w to a vertex of w constitutes a seg. Maﬁy of
the usefﬁl properties of a seg of a graph do not depend on the edge struc-
ture of the graph, hence it is sometimes convenient to consider the seg to
be a set of vertices. A knowledge of the elements of either vertex set w
or vertex set w for a given graph is sufficient to completely describe a
seg. Any seg for which one of the partitioned vertex sets consists of a
single vertex is referred to as a star, and all segs which are not stars

will be referred to as multiple segs. Any two segs corresponding to



partitions which cannot be drawn on a geometric graph without crossing
over one another are defined to be interlocking segs. A more formal defi-
nition is as follows. Let Wis ;g, Wj, and ;3 fe the vertex sets generated
by segs s and qj respectively. Then q and qj are said to be interlocked
if and only if neither W, nor Gﬁ is a proper subset of either Wﬁ or 53.

Another concept closely allied to that of vertex segregation is that
of cut-set. The term cut-set, as commonly used in the electrical éngineer-
ing literature, refers to a set of edges which is a special case of a seg.
A cut-set is a set of edges vwhich is a seg and which if removed from a
graph increases the number of connected parts of the graph by one. Thus
if a graph is éonnectediﬂa set of edges corresponding to a seg is also a
cut—sét only if its removal from the graph separates the.gfaph into pre-
cisely two connected parts. Another viewpoint is that a seg is always a
cut-set or an edge-disjoint union of cut-sets.

A complete seg matrix Qa has a row for each possible seg of a graph
and a column for each edge. FEach seg is assigned an arbitrary orientation,

and the matrix elements qij are assigned values as follows:

q. 1 if edge j is in seg i and their orientations agree,

ij
qij = -1 if edge j is in seg i and their orientations are
opposite,
Iy = 0 if edge j is not in seg i.

For a graph with n vertices, the complete seg matrix Qa will have 2n"l—l

rows corresponding to the number of different ways n objects can be parti-
tioned into two non-empty sets. If the graph is connected, the rank of

Q,a is always n-l. This is established in Seshu and Reed (6) for cut-sets



(their Theorem 5-14), and the proof carries over directly for segs. A very
important set of submatrices of Qa consists of those matrices obtained by
deleting all but 'n-1 rows of Qa-in a manner such that the resulting matrix
is of rank n-1. Such matrices will be called simply "seg matrices". A
graph with n vertices will be described by'%;%fyr ééi(zn-l - 2P) different
seg matrices, where different matrices means matricgs not derivable from one
another by permutations or row or column sign changes. Every cut-set matrix
of a gréph is also a submatrix of Qa’ but the number of cut-sets of a graph
depends on the edge structure as well as the number of vertices of a graph.
Another important submatrix of Qa is Aa’ the matrix composed of those n rows
which correspond to stars. If the segs of this matrix are all assignéd
orientations from the smaller to the larger vertex sets, the resulting
matrix is known as the complete vertex incidence matrix for a graph, and
any of the n-1 matrices formed by deieting a single row from the complete
vertex incidence matrix will be referred to as simply "incidence matrices"
and denoted by the letter A. The vertex corresponding to the deleted row
will be termed the "reference vertex". Still anothér important set of sub-
matrices of Qa is composed of those seg matrices for which every seg 1s the
only seg partitioning some vertex pair of the graph. Such matrices will be
referred to as "fundamental seg matrices". A fundamental cut-set matrix is
defined to be a cubt-set matrix for which every cut-set contains an edge not
contained in any other cut-set of the matrix. A fundamental cut-set matrix
is thus a special case of a fundamental seg matrix, one in which every ver-
tex bair separated by only one seg is an adjacent pair.

Seshu and Balabanian (5) and Seshu and Reed (6) show that a set of

generalized nodal equations can be written as QYRTVn = QI where Q and R



are cut-set matrices, Y is the branch admittance matrix, Vn is the node
variable matrix, and I is the source matrix. Their deveiopment is unaffect-
ed if Q and R are considered to be seg reather than cut-set matrices. Since
.only networks composed of two-terminal elemeﬁts will be considered in this
study, Y can be assumed to be diagonal. For this condition it is not
necessary to actually perform the matrix multiplications of QYR? to form
the coefficient matrix, for the elements of the coefficient matrix may be
written directly by inspection. The procedure forwaccomplishing this is
given in the Appendix. The elements of the column matrix Vn will be node
variables, that is, linear combinations of node voltages, and this matrix
can in most cases be written by inspection. Techniques fof determining the
entries ih Vn will also be included'in the Appendix.

Since Y is by hypothesis a diagonal matrix, it will weight the nonzero
entries of QYR: but will not affect the number of zero entries for the
general case of unspecified element admittances. Hence we need only study
QRT. Every zero entry in QYRT will also be zero in QRT, but because leav-
ing Y out of the matrix product is equivalent to assigning all the admit-
tance weights equal values, cancellations can occur resulting in QRT having
zeros not present in QYRT. This presents no problem for futufe develop-
ments, but to ensure that no confusion arises those zeros of QRT which are
also zeros of QYRT for any diagonal Y will be termed "essential zeros"
while those arising from cancellations of specific admittances will be
termed "non-essential zeros" whenever a possibility of ambiguity is
present.

The matrix product QRT has a useful vector interpretation. @ and R



can both be considered to be sets of segs which are bases for the complete
set of segs which can be associated with a graph, and every zero entry in
QRT corresponds to a seg of Q being orthogonal to a seg of R in the scalar
product sense. A somewhat'more restrictive definition of seg orthogonaiity
is necessary if only essential zeros are to be considered. For this reason
two segs will be defined to be orthogonal if and only if for every nonzero
entry in one the corresponding entry in the other is zero. Thisfdefini—
tibn is equivalent to stating that any pair of segs which do not have a
common edge are orthogonal. Conversely, a pair of segs which have a common
edge are said to be adjacent. This implies that every seg of a connected
graph is adjécent to itself. The 6rthogonality of a basis set of segs is
defined to be the number of orthogonal pairs of segs in that set, and the
‘adjacency of a basis set of segs is defined to be the number of adjacent
paifs of segs‘in that set. Thus twice the orthogonality of a basis set Q
gives the numbér of essential zero entries in QQT and twice the adjacency
of Q gives the number of nonzero and non-essential zero entries.

The matrix AaYAaT is known as the indefinite admittance matrix and .
has many interesting properties and uses. A discussion of this matrix may

be found in Huelsman (2).

C. Preliminary Results
It is interesting to ponder on how many essentially different sets of
nodal equations can be written for an unspecified network with n nodes
under the restrictions which have been assumed. This is given by the
square of the number of different seg matrices which can be written for

the graph, and so is a very large number. For example, for n as small as



n = 6 there are nearly seven .billion different sets of nodal equations
describing the network. Thus it is not normally feasible to catalog all
different sets of nodal equa@ions for a»network as a means of finding an
optimum set. The number of different seg matrices is finite for any given
graph, however, so the existence of at least one maximally uncoupled set
of equations‘is assured.v.In the special case that the two seg matrices
used in formulating the equation set are equal, a seg matrix yielding
maximally uncoupled equations will be a basis set of segs containing a
maximuﬁ number of orthogonal pairs of segs.

Consider a complete graph, that is, a graph in which evéry vertex is
adjacent to every other vertex. Since every vertex or group of vertices
is connected to every other vertex for such a graph, no orthogonal pairs
of segs can be found. Thus the QYRT coefficient matrix can have no essen-
tial zeros and every seg matri£ represeﬁts a maximally orthogonal set of
segs. If a single edge is removed from a complete graph, the resultant
graph has precisel& one orthogonal seg pair. This seg pair is the two
stars corresponding to the two vertices upon which the removed edge had
been incident. In this case the coefficient matrix can have a maximum of
twﬁ zeros and this maximum will be achieved if both Q and R contain the
two stars referred to above. Any seg matrix containing these two stars
will then represent a maximally orthogonal basis set of segs for this
graph. The continuation of this argument suggests, and it will later be
proved, tﬁat an upper bound on the number of essential zeros achievable
in a coefficient matrix for generalized nodal equations for a connected
~graph is given by twice the number of edges by which the graph fails to

be a complete graph.
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IT. THEOREMS AND PROOFS

As an organizational convenience, the formal statements of theorems
and their proofs will be given in this éhapter, but a disecussion of their
implications will be deferred to the succeeding chapter.

Theorem 1. Every vertex pair of a graph must be partitionéd_by at

least one seg of a basis set;

Proof. A basis set of segs for an n-vertex graph G comnsists of n-1
segs. If a vertex pair is not separated by any seg of a set of n-1 segs,
céalesce that vertex pair to form a new graph G'. This will not affect
the set of n-1 segs, but since G' has n-1 vertices, at most n-2 of the set
of segs can be independent, and so the set caﬁnot be a basis for G.

Theorem 2. If a member of a basis set of segs is the only seg

partitioning some vertex pair of a graph, thenAevery other vertex

pair partitioned by that seg must also be partitioned by at least
one other seg.

Proof. Suppose a set of n-1 segs is given for a graph G, one seg of
which is the only seg separating two vertex pairs of G. Coalesce both
vertex pairs to form a graph G' Wiﬁh n-2 vertices and delete the seg re-
ferred to above from the set. The remaining segs are unaffected by this
operation, but now é'set of n-2 segs is written for a graph with n-2
vertices. Thus the_remaiﬁing segs cannot all be independent, and the
original set cannot be a basis. -

Theorem 3. A set of n-1 segs of an n-vertex graph is independent

if and only if it is reducible to an incidence matrix by means of

a nonsingular transformation. That is, a matrix Q whose rows

correspond to segs is a seg matrix if and only if Q = DA where A is



R

an incidence matrix and D is nonsingular.

Proof. The rank of A is n-1 by definition, and since D is nonsingular,

- the rank of Q is n-1, hence Q is a seg matrix. Conversely, if Q is a seg

matrix it has rank n-1. But A‘is also a seg matrix, so Q and A must be
related by some nonsingular transformation matrix D.
Theorem 4. If a multiple seg 4 is independent of a set of segs
F, there exist at least two other segs qj and qk which are also in-
dependent of F and aré such that Wj is a proper subset of LA and W
is a proper subset of ;E, where w, is a vertex set generated by qj,

J

w, is a vertex set generated by Gy 5 and LA and ;& are>the two comple-~

k
mentary vertex sets generated by qy-

Proof. The two vertex éets generated by a multiple seg’eéch contain
two or more vertices, hence either may be subdivided. Then qi may be
written as the sum of the segs corresponding to the subdivision, and at
least one of these must be independent of F if Q; is. Subdividing the
other vertex set yields another seg independent of F in similar fashion.

Corollary 4a. If a star Qs is.independent of a set of segs F, there

exists ét least one other seg 9y which is also indepéndent of ¥ and

is such that Wy is a proper subset of ;;i; where Wy is a verfex set
- generated by 9 and E;i is the vertex set generated by 9y which does
not consist of a single vertex.

Proof. This is a special case of Theorém 4 inh which only one of tﬁe
vertex sets generated by the given seg has any prbper subsets.

Corollary'hb. If a multiple seg 9y is independent of a set of segs

F, there exist at least two stars qvJ and C which are élso inde-

pendent of F.
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Proof. Theorem 4 can be applied repeatedly until single vertex sets
are achieved. |

Theorem 5. If a graph containing n vertices has a vertex of degree

n-1, the incidence matrix A for which the maximum degree vertex is

reference is such that AAT has the maximum possible number of essen-

tial zeros for a seg matrix product.

Proéf. Let Q and R be seg mﬁtrices such that QRT is an optimum .

coefficient matrix. BSuppose a seg a; of the set composing Q is orthogonaln

to segs rj, T ., and T of R. Each seg partitioﬁs the vertices of the

K2
graph into two disjoint sets, one of which contains the reference vertex
and one of which does not. Denote the latter vertex s%ts by qu’ ij, oo
and Vo where the subscripts indicate the dbrresponding seg. The inter-
section of qu with any of ij, Wos tevs OF me is void, for if qu has
a vertex in common with, say, ij, then q; and rj must have a common edge,
the edge joining the common vertex to the reference vertex. Thus q, can
be written as a sum of stars, every one of which is orthogonal to every
seg to which q is orthogonal. By Corollary 4b, at least one of these
stars must be independent of the remaining segs of Q, so qi'can be replaced
by this star.with no loss in orthogonality. The process can then be
applied to every seg in Q and in R until both Q and R have been reduced
to A. |

Theofem 6. Given a gonnected graph G, an upper bound on the number

of possible essential zero entries in any nodal equation coefficient

matrix is given by the number of zero entries in AaAE, where Aa is

the complete vertex incidence matrix for the graph.



13

t

Proof'.,- Consider the indefinite admittance matrix AaYAaT with a row
and column delétéd to form AXA?. Any QYR? can be réalized by pérforming
rank-preserving row and column opérations oﬁ AXA?; that is, QYR? = DAYA?ET
where D and E aré nonsingular. In an indefinite admitfance matrix,.evéry
row and column sums to zero, and since the ipdividual values of admittance
are left unspécified, this is thé only way that row and column operations
cén produce zerd entries. Thus it is only possible to pérform a row
(column) operation which produces a zero éntry in AXA? if.the‘déleted row
(column) has a zero éntry in the column (row) in which thé Zéro is producéd.
Once such a row (column) operation is performed, thé’éolumn'(rdw)Ain which
the zero éntry was produced no lqngér sums to.zéro; and so can no longer
be used to produce a zéro entry: Thus thé maiimum.possiblé numbér of zéros
which can be produced is équal to the numbér in thé délétéd'row and column:

Corollary 6. An upper bound on the number of esséntial- zeros of an

optimum QRT for a connected graph is givén by twicé thé numbér of

edges by which thé graph fails to be a compléte graph, that is, by
n(n~1) -.2e where n is the numbér of verticés of thé graph and e is
the number of edges;

Proof. Let Aa be thé complete incidence matrix for a graph not con-.
taining isolated vertices. Then the matrix AaAz contains two zeros for
every‘non—adjacent vertéx pair.

Theorem 7. For any connected graph G, thé incidénce matrix A with

vertex vi as reference is such that AAT contains at worst n—l—pvi

less zero pairs than the maximum. attainable number where n is the

number of vertices in G and O is the degree of Ve



Proof. By Theorem 6 the maximum attainable number of zeros is at
most the number of zeros of AaAz' Deleting the row and column correspond-
ing to vi from AaAg converts AaAZ into the AAT'matrix described in the
theorem. The v, Tow and column of AaAz contain a total of two zeros for
each vertex which is not adjacent to-vi, and there are n-—l-pvi such ver-
tices.

Theorem 8. An optimum QRT matrix for a connected non-separable'graph

éontains at most 2n - 6 more zeroé than any AAT matrix of the graph,

where n is the number of vértices of the graph and A is an incidence
matrix.

Proof. The matrix AaAz for a connected non-separable graph contains
at least three nonzero entries in every row and in every column, so if a
row and column are deleted to form an AA? matrix with m zeros, the maximum
number of zeros in any QRT matrix is m + 2(n-3).

Theorem 9. The meximum possible percentage improvemént of an optimum

QRT matrix over an optimum AT matrix is given by £%§~xv100 for any

connected graph.

Proof. Consider the matrix AaAz' Assume that the ith row has m

zeros. If the corresponding vertex is an optimum choice for reference

for an AA? matrix, every other row has at least m zeros, and the AAT will

have at least mm - 2m zeros where n is the number of vertices in the graph.

Since any QRT matrix can have at most mm zeros then, the maximum possible

nm - (nm-2m) _ 2
nm - 2m n-2°

Theorem 10. Let m:.L be the number of vertices in the subgraph Gi

fractional improvement is

composed of the edges of a seg 9 together with their endpoint ver-

tices and let P; be the number of separate paits of Gi' Then for a
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given graph a seg a; is adjacent to at least m- P - 1 other members
of any basis set of segs for the graph.
Proof. The number of brancﬁes in a forest for the subgraph is m:.L - P
(Busacker and Saaty (1) Theorem 1-6), hence m, - p; is the number of ad-
jacent vertex pairs of the subgraph'which must be partitioned by segs in
any basis. By Theorem 2, a9 can be the only seg partitioning at most one
vertex pair, so a; must be adjacent to at least m, -p; - 1 segs in any
basis.
Corollary 10a. VA star qvﬁ is adjacent to at least pvj - 1 other
members of any basis set of segs for a graph, where pvj ié the degree
of the vertex corresponding to qvj'
Proof. By Theorem 10, qvi is adj;cent to at ieast m.Vj - pvj -1
other segs of any basis. But since qvj is a star ij =1 and mvj -1
= pvj'
Corollary 10b. The orthogonality of a seg a9 is at most
(n-2) - (mi -p; - 1) =n-1 - m, + D, in any basis set of segs,
where n is the.number of vertices in the graph. The orthogonality
of a star qvj is at mést n-1- pvj in any basis set of segs.
Proof. The corollary is a restatement of Theorem 10 and Corollary
102 in terms of orthogonality rather than adjacency.
Theorem lli In a complete set of segs Qa for a graph having n'
vertices, any given seg g, is orthogonal to 2(n -l-m # pi) -1
other members of Qa'

Proof. Consider the subgraph composed of the edges of a together

with their m. endpoint vertices. First assume the subgraph is connected.
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Then there will be n - m stars which are not adjacent to q and all segs
obtainable as a sum of these stars taken two at a time, three at a time,
ete., will also be orthogonal to q- The sum of a sequence of p objects

(n - mi) 1

taken 1, 2, . . ., p at a time is 2° - 1, so there will be 2
possible segs orthogonal to q,- If now a is asgﬁméd to have p; separate -
parts, segs composed of combipations of the separate parts along with
combinations of nonadjacent stars will also be orthogonal to q;- Thus

there will ve 223 ~ 1) pm-m) 4 (-1 - m, + ;)

- 1 segs of
Qa orthogonal to qi.
Lemma 12a. In a basis set of segs composed entirely of stars, every

star qvj is adjacent to precisely pv - avj‘other members of the ba51?,

J
where avj is a number equal to 1 if vertex vj’is adjacent to the
reference vertex and zero otherwise.

Proof. If the vertex vj corresponding to qvj is not adjacent to the
reference vertex v, every edge of qvj will be in precisely two segs, qvj

and the seg corresponding to the other vertex incident upon this edge,

hence qvj will be adjacent to precisely pvj other segs of the basis. If

vertex vj is édjacent to the reference vertex vn, the edge: joining vj to

v will be in no other seg but qvj’ and all other edges incident upon Yj wi}l

be in precisely two segs as before, hence qVj will be adjacent to precisely

Pyj ~ 1 other segs of the basis. |
Lemma 12b. If all the segs in a basis set are restricted to be stars,
the ofthogonality of.the set is maximized by choosing a highest-

degree vertex as reference.

Proof. By Lemma 12a and Corollary 10a, a basis set of segs composed
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entirely of stars has the property that for any specified reference vertex
each star is adjacent to the fewest possible other stars. Choosing any
highest-degree vertex as reference ensures that the remaining stars have
ninimum p and that a maximum number of them are adjacent to the reference
vertex.
Theorem 12. If for any given graph there are no multiple segs s
with the property that m. - P

<p < pvn’ where vj and vn are ver-

i vy —
tices belonging to W and %ﬁ respecbively, then a set of stars with

a highest degree vertex as reference is a maximally orthogonal basis

set of segs.

Proof. Theorem 10 and the hypothesis of the theorem ensure that no
multiple segs exist for the given graph which can be adjacgnt to fewer
other segs of any basis than a set of stars. Lemmas lééaand 12b then
complete the proof.

Theorem 13. If a seg 9 which is not a cut-set is independent of a

set of segs F and is adjacent to m of the members of F, there exists

another seg qj which is a cut-set and is also independent of F and

is adjacent to at most m of the members of F.

Proof. Let LA and ;E be the vertex partitions generated by seg q;-
Then if a; is not a cut-set one of the vertex sets, say Wss must be
further divisible into Yertex sets Wj and w, , where the union of Wj and

k

W equals LA and the intersection of wj and W is void, in a mammer such

that no vertex of w& is adjacent to any vertex of Wy Consider the segs

qwj and %ric corresponding to vertex sets Wj and w, . q is the sum of qWj

and Q> SO at least one of the latter must be independent if a; is.
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Further, qwj and qWk are edge-disjoint, so qi is adjacent to every seg
which is adjacent to either qwj or qwk or hoth. Thus at least one of qwj
and 9> S8y qwj’ can replace 9y in an independent set of segs with no
increase in adjacency. If qwj ig a cut-set the theorem is proved; if not,
vertex set ws can be further subdivided and the above process repeated
until a cut-set is obtained.

Corollary 13. No maximally orthogonal basis set of segs need contain

a seg which is not a cut-set.

Proof. Suppose some maximally orthogonal basis set of ségs contains
segs which are not cut-sets. Then by Theorem 13, each of these segs can
be replaced by another which is a cut-set with no increase in adjacency.'
The set of cut-sets so formed must then also be a maximelly orthogonal
basis set.

Theorem 14%. The n-1 independent node variables associated with a set

of generalized nodal equations can be node-pair voltages if and only

if the set of segs associated with the node transformation is a funda-
mental set, that is, if and only if every seg in the set is the only
seg partitioning some vertex pair of the graph.

Proof. Assume that the graph is fully connected, that is, every ver-
tex pair is connected by an edge. No generality is lost by this assump-
tion since any graph may be augmented by zero admittance-weight edges
without affecting the nodal equations associated with the graph. The node
transformation is then QTVh = Vﬁ where QT is the transpose of a seg matrix,
Vn is a column matrix ﬁhose entries are node variables, and V. is a column

b

matrix whose entries are node-pair voltages. Vb contains & row for each



19

possible node-pair voltage of the graph and Vn contains one less row than
the network under consideration has nodes, which is the largest number of
voltages that can be independently specified for an electrical network.
The node transformation is a singular transformation expressing a set of
variables, the entries of Vb’ in terms of a basis set, the eptries of Vn'
First sﬁppose that Q is a fundamental seg matrix. Then every row of
Q Will contain an entry not in any other row, hence Q must contain a unit
matrix. After a suitable reordering of the rows of QT and V » the node

transformation may be written in partitioned form as

bl
n

——{lv | =
lejz 1'v 12

<

from which UVﬁ = Vn = Vb 11°

tage, every entry in Vn must also be a node-pair voltage.

Since every entry in V5 is a node-pair vol-

Conversely, suppose the entries of Vh are all node-pair voltages.
Then this set of node-pair voltages must be a subset of those node-pair
voltages which are entries of Vb. Thus, after a suitable reordering of
the rows of Vb’ Vt may be partitioned in such a fashion that it contains
Vh aé a submatrix. After conformally partitioning QT, the node transforma-

tion equation becomes

T

Saf |y |2 P
T|l.in V.

Q> b 12

. T _ _ T _ T . .
Expanding, Qll Vn = Vh = UVn, and (Qll - ) Vn = 0. If Qll is not a unit
matrix, then a linear combination of the elements of Vn will be equal to

zero, contradicting the hypothesis that a set of node variables is an
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independent set. Therefore; ng is a unit matrix. Thus, Q contains a unit '
matrix of maximum possible rank and so must be a fundamental seg matrix.
Theorem.l5.~ A basis set of segs for a graph will be a fundamental
set if and only if the set,does not contain én# interlocked segs.
Proof. TFirst assume that the basis set of segs contalns an inter-
locked pair of segs, 9 and qj. Then this pair of segs div;des the ver-
tices of thé graph into four nonvoid sets, Wy Wé, ws,.and ), - Let q; be

the seg partitioning vertex sets w. and ¥, from w, and W), and let q, be

| 1 2 3 J
the seg partitioning Wi and W), from V, and wg. If qi'is the only seg par-
titioning a vertex pair, the vertices of the pair must belong to sets Wy

and'wh br to LA and ws, and if qj is the only seg partitioning a vertex

pair, the vertices of this pair must belong to sets Wi and w2 or to wg and

W), - Any combinaﬁion of these possibilities involves three of the four

LY and wg; By Theorem 2, every vertex pair in which

one vertex is in wh and the other in the union of E

vertex sets, say Wy
Vs and w3 must be
partitioned by at least two segs. But if the set of segs is to be funda-
mental, there must be n-1 vertex pairs (for a graph with n verti&es) each
partitioned by only one seg, and the independgnce of the set requires that
one of these vertex pairs have one vertex in W), gnd the other in the union
of LY and w3. Thus a basis set of segs containing interlocked segs
cannot be a fundamental set.

Cdnversely, assume that the basis set of segs is.not a fundamental
set. Then at least one seg of the set, say q;» must be such that every
vertex pair partitioned by 9 is also partitioned by anéther seg of the

set. If we designate any vertex of the graph as reference and character-

ize each seg a; by the vertex set Wj it generates which does not contain
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the reference vertex, then if ws is not a proper subset of some Wj every
vertex in w. must be contained in another vertex set. If none of these
vertex sets correspond to ipterlocked segs; the union of some vertex-dis-
Jjoint subset of them will be Wio thus the segs cannot be an independent
set. If every vertex in Wi is not contained in another vertex set, the
requirement that every vertex pair partitioned by q; be also partitioned
by other segs requires that LA be a proper subset of some Wj and that every
vertex that is in wj but not W, must be contained in another vertex set.
The result is as in the previous case. Thus a non-fundamental basis set
of segs must contain.interlocked éegs.
Corollary 15. The node variables associated with a seﬁ of generalized
nodal -equations can be node-pair voltages if and only if the set does
not gontain any interlocked segs.
Proof. Apply Theorem 15 to Theorem 1.
Theorem 16. ILet a seg q, be a member of a seg basis for a graph G.
Then if a is not interlocked with any other meﬁber of the basis, a
must be édjacent to at least m, - bi other members of the basis,
where o is the number of vertices which are adjacent to an edge of

qi and bi is a number such that:

bi =2 if q is the only seg separating a vertex pair and both
vertices of the pair are adjacent to an edge of 9y

bi =1 if a is the only seg separating a vertex pair and pre-
cisely one vertex of the pair is adjacent to an edge of a;

b, = 0 otherwise.

Proof. Consider the subgraph G' composed of the edges belonging to
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qi'and their endpoint vertiqes. Since the set of segs is independent,
every vertex of G' must be partitioned frém every other‘vertex of G by at
least one seg, and no seg can be the only seg partitioning more than- one
vertex pair.. Since by hypothesis none of thé‘segs of the basis are inter-
locked with a0 9 will be adjacent to at’léast cne seg for each vertex
of G' except those one or two vertices which are pért of a vertex pair
separated only by q,-
Theorem 17. Let Q be a fundamental seg matrix and let D be the non-
singular transformation matrix relating Q to an inéidence metrix A,
so that @ = DA, and let a consistent reference convention be adopted
for Q and A. Then for a suitéble ordering of the rows and columns
of @ and A, D ¢an always be written as the sum of a unit matrix and
a strictly lower tfiangular matrix containing only zeros and ones as
entries. Moreover, D can be partitioned into a direct sum matrix in
which each of the diagonal submatrices Di has a last row in which all
the entries are ones. Deleting the last row and column from Di pro-
duces a new submatrix in which either the last row has all its entries
ones or the submatrix can be partitioned into a direct sum mebtrix in
which each of the submﬁtrices'so determined has a last row in which
all the entries are ones. In either case, the process can be repeated
until 81l such submatrices are reduced to first order matrices.
Proof. The reference vertex, that is, the vertex not corresponding
to a star of A, must be a member of at least one vertex pair partitioned
by only one seg. By Theorem 15, such segs cannot be interlocked since

they are to belong to a fundamental set, hence the segs are vertex disjoint
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and can be written as sumsvof disjoint sets of stars. Each such seg is
the only seg partitioning a vertex pair, so one of the stars which suﬁ
to the seg cannot be in any other seg. The vertex for this star may then
be considered the reference vertex for the subgraph‘corresponding to the
set of stars, and the argumenf repeated for each subgraph, sub-subgraph,
ete.
Corollary 17. Let Yij be an element of the matrix QYQ? for a network
with a graph G, and let Q be a fundamental seg matrix. Then with a

consistent reference convention and suitable ordering of the vertices

of G,
i J
Yi. = Z I ¥
7 pmaci gy Y

where ypq %s'an indefinite admittance matrix element for the network

corresponding to G.

Proof. The corollary is a direct consequence of Theorem .17 with the
matrix operations written as summations and the fact that y?q is an ele-
ment of AXA? for G.

Theorem 18. Divide the &ertices of any given graph into four all-

inclusive mutually-exclusive nonvoid sets, w., LY wg, and ), - Desig-~

| nate the seg corresponding to vertex set W, 88 Q. Define a seg 9
to be that seg whose corresponding vertex set LA is the union of Vy

and Vs and define a seg g‘j

set ws is the union of W2 and Wg. Let mk and bk be as defined in

Theorem 16 for a seg G in any specified basis not containing inter-

to be that seg whose corresponding vertex

locking segs. Then if q, can replace g in an otherwise fixed basis
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containing 93 and if (m.W_:L -b-) - (m:.L - bi) = ¢, where ¢ is a num~

Wl
ber, it is true that (mVS - bﬁ3) - (mj - bj) < - c.

Proof. Let (mw1 - bwi) - (mi - bi) = ¢ and let

-b.,) - - b,) = d. i i
(mw3 WS) (mj bJ) d. Adding these two eqpat}ons together results
in
+4 = - - - + (m . - - -
c+d=(m. -b) (m, - b,) (mw_3 bws) .(mj bj)
Define the gquantity nk' to be the number of vertices in vertex set

W which are adjacent to vertices in vertex set wb and ... and wq. Then

the o terms may be expanded as follows:

Mg oy p#my g¥my ) mmy ooy g my gty o)
+ n2,l + n3’l + n)-l-,l
Bz = (R3p * 835 ¥ B3 0y 1 < B3 gy B3 g 03 5,)

M TR T T S W
mg = oy g4my mm g) * (0 gy ) -0y )
*(ng ) +mg 5 -ng 9p) +(ny 5+ 5 -m g5)
my = () , +.n1,3 - n1,23) *(my )+, - nz,lh)
tlogp tngy g ) (o o vy 5 -my o0)
Then - (¢ +d) = (n2,h - n2,lh) + (n2,h - n2’3h) + (n)_L,2 - nh,12)
oy o -y 5) +(ny g - n1,23h) + {ng oy - 13 15,
+ (bwl - bi) + (bw3 - bj)
Now investigate the bk terms to find conditions for which bi can be greater
than bwi' By hypothesis qQ and Q. cen be interchanged in the basis‘under
consideration. Thus, if a; is the only seg partitioning a given vertex
pair in the basis, then 9 will also be the_dnly seg partitioning this

vertex pair if it replaces q,- This requires that one vertex of the pair
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be in vertex set Wy and the other in W, o If the vertex in Wy is incident
upon an edge of qi it must also be incident upon an edge of qwl' The ver-
tex in W, can be incident upon an edge of a; but not L only if the ver-

tex is adjacent to a vertex in v, but not Wy . Thus

(nh”2 - my gp - bi + bwl) > 0. By symmetry, (nh’2 o bj + bW3) >0

also, so
mlerd)=ny ) mmpp) * (e mp ) 4y 5 mmy 1p - by
tog) iy ooy oy =By bg) + ) - my o)
*ng o =03 10))e
Now all the bracketed terms on the right hand side of this equation are
equel to or greater than zero, so - (e +-d) > 0 and 4 < -c.
Lemma 19. Let interlocking segs qa; and qj be members of a basis set

of segs P for a graph, and let qi and q_j partition the vertices of

the graph into four sets, Wys Wos Was and W), in a manner that the

3
union of Wy and v, is a vertex set corresponding to 9 and the union
of W and w3 is a vertex set corresponding to qj. Define the set of

segs P' to be the basis set P with 9 and q_j deleted, and let Lk be

a seg partitioning vertex set Ve from the femaining vertices of the

graph. Then at least.one of the sets (P', Qs qws) andi(P‘, 9o qWﬁ)

will also be a basis.

Proof. Apply Corollary Ub to every multiple seg of P'. Then all but
three of the vertices of the graph will correspond to stars.” Further, by

Theorem 1 no two of these three vertices can be in the same wk since the

- segs are independent, so either w, and w, each contain one vertex or LA

1 3

and wh each contain one vertex. The reduction of the members of P' to
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stars is unaffected if a; and qj arg replaced by other segs partitioning
the same three vertices from one another, hence at least one of (P', qwl’
éwS) and (P', QWQ; qwh) will be a basis.
Theorem 19. If a basis set of segs for a graph contains an inter-
locking pair of segs in which both segs of the pair are not further
interlocked with any other segs of the sét, then-the interlocking
pair may be replaced by a non-interlocking pair with no increase in
adjacency.
Proof. Let segs as and q_'j be an interlocking pair as defined in the
Theorem, and lef Wi,
Then by Lemma 19, 9 and qj can be replaced in the basis b& ?ither Qg and

Wy ws, W, Qo P, and P' be as defined in Lemma 19.

qu or by 9o and Q. No generality is‘lost by assuming that the former
case is true because the latter case can be converted into the former by
a suitable relabelling of the vertex sets. Let Son represent the set of
'edgeé connecting vertéx sets v and v , and let.c(ij, kl, ..., mn) be the
number of segs belonging to P' which contain edges belonging to sets Sij’
skl; .ees and s but none’of the other sets Shq Let qu(P') be the
number of segs of P' adjacent to seg Qe > and let A(Pj) represent the ad-
Jacency of a part{buiar basis Pj' Then the number of segs of P' which are
adjacent to q less the number adjacenE_tglqwl may be written as given
below.

(') = o(23) + o(2h) + o(23,2h)

qwl’ .
+ o(23,34) + o(2L4,3k4)

. Aqi(P') -

+ o(23,24,34) - o(12) - o(12,34) .

Similarly, the mumber of segs of P' which are adjacent to qj less the
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number adjacent to 93 is
' - ' = . + + BB
‘ qu(P ) - Aqw3(P ) = o(12) + o(24) + o(12,12h4)
+ o(12,24) + o(1k,24)
+ o(12,14,24) - o(23) - o(14,23)
Now if s, is non-void, U will be adjacent to qw_3 and qa; will be adqacent

13
to qj. If s is void, qwl will not be adjacent to qws, but q; may or may

13
not be adjacent to qj. Thus in any event the adjacency of basis
P, = (p', a5 qj) less the adjacency of basis P, =(p', @ qﬁB) is equal
to or greater than the sum of the two previously derived equations.
ME) - A(R,) > 20(2k) + o(12,14) + o(12,2h) + o(1h,2h)

+ o(23,24) + o(23,34) + o(2h,3h)

+ o(23,2h,34) + o(12,14,24)

- o(12,34) - o(14,23)

Those segs which contain edges of s

12 and s3h or edges of 1) and 523 must .

necessarily be interlocking with q, or q,j or both, and by hypotheses P'
contains no such segs. The remaining terms are all inherently non-nega-

tive, so A(Pl) - A(P,) > 0, completing the proof.

2
Corollary 19. If a maximally orthogonal basis set of segs for a graph
contains interlocking segs in a manner that both segs of every inter-
locked pair are not further interlocked with any other members of the

basis, then a fundamental set of segs exists which is also a maximally

orthogonal basis.

Proof. Apply Theorem 19 to every such interlocking pair until nome -

remain. Then the resulting set is at least as orthogonal as the original

set and is, by Theorem 15, a fundamental set.
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III. DISCUSSION

As a first step in this investigation, some properties of basis sets
of segs were established in Theorems 1 through U4 and their corollaries.
Theorems 1 and 2 both have obvious élgebraic analogs. Becausé of the very
simple structure of incidence matrices, Theorem 3 has practical value as a
means of constructing more coﬁplicated seg matrices or for determining if
a given set of segs is independent. Theorem 4 and its corollaries are
essentially replacement theorems concerned with the existence of segs
capable of replacing a given seg in an independent set.

The next several theorems deal with bounds on the number of essential
ZEeros attaiqable‘as.nodal equation coefficient matrix eﬁtries. It was
established in the Introduction that this number is the same as the number
of essential zeros of QRT where Q and R are ség matrices. In all subse-
quent discussion the term "optimum QRT" will be understood to refer to the
nodal equation coefficient matrix having the maximum possible number of

" will refer to a similar

essential zero entries, and the term "optimum QQT
matrix with the additional restriction that the constituent seg matrices
are equal.. Theorem 5 giveé a sufficient condition for which the matrix
obtained by deleting a row and corresponding column from the indefinite
admittance matrix‘AaYAZ is an optimum QYRT matrix. Theorem 6 gives the
very basic result that the number of zero entries in an indefinite admit-
tance matrix is an upper bound on the number attainable in an optimum QRT
matrix. It then follows that deleting a row and corresponding column from

the indefinite admittance matrix to form the matrix AYAT loses just those

zeros which were in the row and column deleted, and Theorems T, 8, and 9
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are concerned with the number or percentage improvement in the number of
zgro entries in an optimum QXRT matrix over the number in an AXA? matrix.
The fact that an optimum QYRT matrix regains as many as possible of
the zeros lost by deleting a row and column from AaYAg suggests the inter-
pretation that the search for this Q and R is equivalent to performing row

and column operations on AYAT to transfer zeros from the deleted row and

“column by means of the indefinite admittance matrix property thatall rows

and columns sum to zero. If for example the deleted row has a zero entry
in the kth column, the sum of all rows having nonzero entries in the kEP
column produces a zero in this position. If this sum has more off-
diagonal zero entries than one of its constituent rows, it can replace
that row and thus in effect transfer a zero out.of the deleted row.

The next topic investigated will be the determination of the minimum
number of segs of a basis to which a given seg can be adjagent. Since
any two segs are‘adjacent if they have a common edge, one might expect a
close connection between the number of edges of a seg and the minimum
number of segs to which it is adjacent. The only complication which
arises is that a seg can contain an edge which does not couple it to any
other segs to which it is not already adjacent. Such edges have the
geometric appearance of a cross-coupling. For example, in Figure 1 edge
ad will cause seg 9 to be adjacent to any other seg partitioning vertices
a and d. But if edge ad is removed from the graph, any seg partitioning
vertices a and d will still be adjacent to 9 via one or more of edges
ac, bc, and bd. One equivalent way to count the edges of a seg which‘are

not cross-coupled is to count the number of vertices which are incident
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Figure 1. An example of a seg containing a cross-coupled edge
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upon an edge of the seg and subtract the number of separate parts of the
subgraph consisting of the edges of the seg together with their endpoint
vertices. Thus Theorem 10 establishes that in any basis a seg Q. must be
adjacent to at least as many segs as one less than the number of non-
cross-coupled edges of q; - If q is a star the statement of Theorem 10
may be simplified because the quantity m, - P, then reduces to simply the
degree of the vertex corresponding to the star. Corollary 10a is a re-
statement of Theorem 10 for this condition. Corollary 1l0b restates Theorem
10 and Corollary 10a in terms of orthogonality rather than adjacency.
Interestingly enough, it is a considerably easier task to determine
how many of the 2n-l -~ 1 segs of a complete set of segs for a graph are
orthogonal to a given seg than to choose an independent set of n-l segs
of maximum orthogonality. It is proven in Theorem 11 that a seg a be-

(n—l-mi-Pi)‘ -1

longing to a complete set of segs Qa is orthogonal to 2
members of Qa' Arranging all the segs of Qa in order of orthogonality and
choosing the first n-l1 independent segs as a basis Q will often but not
always result in a maximally orthogonal basis since a seg q; can be ortho-
gonal to more members of Qa but less members of Q than a seg qj. A not~
able example of this type of seg is one which achieves a low value of

m:.L - pi through large Pi rather than small m. . For example, Qe in Figure
2 is such that m = Py = 6 - 3 = 3. Every other possible seg qa for this
graph has mi - P > 3, hence Qe is orthogonal to a maximum number of other
members of Qa, yet Qe does not belong to any maximally orthogonal basis.

The reason is apparent from Figure 2. Many of the segs orthogonal to %Y

are those in which, for example, vertices b and ¢ or f and g are in the same
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Figure 2. Example of a seg which is orthogonal to a maximum number of the
members of Qa hut is not a member of any maximally orthogonal
basis
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vertex set, and such segs will be orthogonal to relatively few other segs.
In the special case that for every multiple seg a; of a graph the number
m, - P is greater than the degree of every vertex in one of the two ver-
tex sets generated by that multiple seg, it is true that one choice of
the first n-l independent segs of a complete set'Qa arranged in order of
orthogonality will be a set of stars. It is shown in Theorem 12 that such
a set of stars will be a maximally orthogonal set. The hypothesis of
Theorem 12 is a sufficient but not necessary condition for a set of stars
to be a maximally orthogonal basis, as evidenced by graphs such as the one
shown in Figure 2.

One general statement which can be made is that the segs comprising
a maximally orthogonal set can always be chosen to be cut-sets, which is
proven in Corollary 13. If to the hypothesis of Théorem 13 is added the
restriction that seg 9 not be interlocked with any member of F, the
corollary would be changed to state that maximally orthogonal bases not
containing interlocking segs cannot contain segs which are not cut-sets.

By Theorems lh,and 15 and Corollary 15, the following three state-
ments are completely equivalent:

1. The node variables associated with a basis set of segs are all

node-pair voltages..

2. The basis set of segs is a fundamental set.

3. The basis set of segs contains no interlocking segs.
Theorem 16 then gives the minimum number of segs of a basis which can be

~adjacent to a given seg with any of the above restrictions added and for

. either of two preconditions or for no preconditions on the remaining
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members of a basis. Note that if the basis is restricted to consist of
non-interlocked segs only the number of segs to which a given seg must bhe
adjacent is always greater than the number which can be achieved with the
ban on interlocked segs removed if the subgraph corresponding to the given
seg has more than one separate part. This verifies that interlocked segs
are necessary to achiéve a minimum adjacency for a seg whose corresponding
subgraph has more than one separate part. As discussed before, however,
achieving a minimum adjacency for any one seg by no means ensures that the
set so formed will have maximum orthogonality.

The next topic to be discussed is the determination of an optimum QQT

Aif Q is restricted to be a fundamental seg matrix. Finding an optimum QQT

is equivalent to selecting a set Q of-n—i independent segs from a complete
set of segs Qa in a manner that the orthogonality of @ is at least as

great as that of any other set of n-1 independent segs of Qa' A funda-
mental set of segs can be considered to be based on a tree of a complete
graph, and'every graph can be converted into a complete graph without
affecting the nodal equatidns describing it by augmenting it Wi£h Zero
admittance-weight edges. It would be highly desirable if an algorithm
could be found which would lead to a tree corresponding to a maximally
orthogonal fundamental set of segs, but in all probability such an algorithm
does not exist. Trees corresponding to maximally orthogonal fundsmental
sets of segs for different graphs have little in common, and the addition
or deletion of a siﬁgle edge from a graph can profoundly change the charac-
ter of such a tree. This large sensitivity of the choice of an optimum

set of segs to the edge structure was found to be typical of those cases
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for which an incidence set was not optimum. As an extreme if somewhat
pathological example, consider the graph and set of segs given in Figure 3.
The indicated sét of segs gives the best possible QQ? matrix--every off-
diagonal entry is zero. If an edge is added between vertices a and f, the
same set of segs now gives the worst possible QQT.matrix, one with no zero
entries at all.

The most promising procedure for finding an optimum choice of funda-
mental segs appears to be one which works directly with the matrix product
QQT. As a first step Theorem 1T giveé a chaﬁdcterization of a fundamental
seg matrix Q in terms of a specific form for the transfofmation matrix
which operates-on an incidepce matrix to produce Q. This in turn leads to
Corollary 1T, which states that if Q is specified to be a fundamental seg

matrix for a graph G, then an element Yij of the matrix QYQT may be ex-

pressed as

;0 d
Y,.= » % y_,
Mo pmaci gebeg PO

where y_ is an indefinite admittance matrix element for the electrical
network corresponding to G. The form of this general term indicates that
all diagonal elements of QYQT must be nonzero if G is connected. This is
best seen by writing the diagonal term in expanded form as
Yii = (yaa * Ya(atl) T yai) * (y(a+l)a ¥ Y(a+1)(a+l)

+ .. y(a+1)i) + oieel + (yia ()t t yii),'
Now Yii is zero only if each bracketed term is zero. But the kth bracket-
th

e€d term is zero only if the kth vertex is adjacent to a subset of the a

through ith vertices and no others, and this cannot be true for all
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Figure 3. Example of sensitivity of orthogonslity of & set of segs to the
edge structure of a graph
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bracketed terms without contradicting the hypothesis that the graph is
connected.

The form of an element of QYQT also allows the following conclusions
to be drawn concerning the nature of the row and column operations forming
QYQT from AXA::

1. °'All necessary operations produce zero entries.

2. The utility of any given operation can be affected by a subse-

quent operation.

3. Every necessary row (column) operation involvés a summing of

rows (columns) in Which.every constituent row (column) contri-

butes to the production or maintenance of a zerc entry.
- Examination of the general term reveals that if any entry is zero, then
that zero would also have been produced by the responsible row or column
operation alone. The other operation applied to the term, if any, can
then prevent the gaining of a zero but it cannot aid in the zero production
process. Interactions between Qberations are thus wholly negative. This
conclusion represents a major difference between fundamental and non-
fundamental sets of segs, for if interlocking segs are permitted it is
possible that undér rather stringent conditions a QYQT element can bhe zero
even though neither of the operations affecting the element can by them-
selves produce a zero. The fact that the number of zeros gained or lost
by a particular operation can be affected by a subseguent operation suggests
that a procedure leading monotonically to an optimum QYQT is not to be
found. It is even possible, and will later be demonstrated by an example,

that a sequence of row and column operations can result in a net gain of
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zeros in cases where none of the operations by themselves produce more
zeros than they lose. This behavior is possible begause two or more oﬁer-
ations can loée zeros in the same matrix address. Because of the property
that all interactions of operations are negative, only thosé operations
need be considered which produce zeros in off-diagonal positions, and in
each such operation the only rows or columns which need be involved are
those which are active participants in producing a zero or preventing.the
loss of a zero.

Two procedures for finding optimum or near—optimum'QYQ? matrices will
next be preseﬁted and each will be illustrated by means of an example.
The first procedure is relatively straightforward and direct and realizes
the maximum possible numﬁer of zeros in most but not all cases. The second
procedure.involveé substantially more trial and error but is guarantéedAto
reéult in an optimum QYQT matrix. B

The first procedure, hereafter referred to as procedure I, is as
follows:

1. Write the AaAZ matrix for the network.

2. Select a row with a minimum number of zeros, say the k#h, and

cross it and the corresponding column out. If this row has no zeros,

the resulting incidence matrix is optimuﬁ: If it does, continue the

procedure. |

3. Choose a column, say the m#h, which has a zero in the Kth rowv.

Sum the rows which have nonzero entries in the mﬁh column and note

whether or not the sum has more off-disgonal zero entries thanva

constituent row. If not, repeat for all remaining kth row zeros,

and continue with row operations producing two kth row zeros at a




39

time, then three, and so forth until either a row operation is found
which gains zeros or all possibilifies have been exhausted. If the
latter, the procedure is finished; if the former, céntinue the
procedure.
L. fﬁe set of rows determined in step 3 will appear as a group if
at all in any subsequent operatioﬁs involving other rows of the
matrix. If the row op;ratiqn determined in step 3 does not lose one
or more zeros in any position in the row, perform the row and corres-
ponding column operations. If it does, check to determine if a larger
'grouping of rows yields a larger net improvement. If not, perform
the previously indicated row and column operations. If so, find a
set of rows which either loses no zeros or %hiéﬁ has as large a net
improvemént as possible and perform the corresponding row and column
operations.
5. Recycle to step 3 and repeat for all combinations of zero-produc-
ing operations for which the rows ére proper subsets of the operation
performed in step L.
6. Recycle to step 3 and repeat with the restriction that any new
row operation will not include any rows used in previous operations
unless it includes-all other rows of that previous operation.
The-AaAg matrix desired i# step 1 is simply an indefinite admittance
matrix with all admittances assumed to have unity value, and so is easily
written by inspection. 'In step 2, it doesn't really matter which row is
chosen as reference, for if a row without a minimum number of zeros:is

chosen, the sum of all remaining rows will be found to correspond to a row
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operation which will be performed in step 3, and replacing a row and column
by the sum of all.other rows and columns is simply equivalent to selecting
a new reference. Theorem 18 justifies not testing combinations containing
proper subsets of sets of rows whose sum gives an improvement in the number
of zeros in a row. In step 5 it is not necessary to actually test every
combination. The only operations which need to be rechecked are those
which had previously lost precisely as many zeros as they gained.

As an example of the application of the procedure, a maximally ortho-
gonal basis set of fundamental‘segs will be found for the graph of Eigu¥e
4. The AaAz matrix with the row and column corresponding to ﬁertex T

chosen as reference is given below.

©l

2 -1 -1 0 0o o o] o o0

-1 2 0 -1 0 0 [0] 0 0.0

A A

‘"0 0 0 O 0 o0 {-1| o 2 -1

0 0 0 0 0 0 |[O0]-1 -1 2
As may be verified from the graph'or the above matrix, AaAg has
n(n-1). - 2e = (10)(9) -4(2)(13) = 64 zero entries, and an optimum choice

of reference vertex yields an.AA? matrix with 64 - 2(na1—pv7)_= 6l

= 2(10=1-3) = 52 zero entries. There are no row operations producing a
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single reference zero in AAT which result in a net improvement in the
number of zeros, nor are there any involving two reference zeros which
result in a net improvemeﬁt. The first row operation found which yields
a net improvement is adding rows 1, 2, 3, and 5 to row 4. This operation
produces zeros in columns 2 and 3 and loses a zero in column 5 for a net
gain of one. Since the operafion loses a zero, larger groupings of rows
containing rows 1, 2, 3, 4, and 5 are investigated and it is found that
adding rows 1, 2, 3, 4, and 5 to row 6 produces one zero without losing
any. This row and column operation is then pefformed, resulting in the
matrix below.

2 -1 -1 "0 0 0 0 0 O

-1 2 0 -1 0 0 0 0 o0

0 0 0O 0O O 0 0 2 -1

‘0O 0 0O 0 0 0 -1 -1 2

S —

A11 combinations of the first five rows are then rechecked and it is found
that adding rows 1, 2, and 4 to row 3 now produces one zero without losing
any. This row operation and the corresponding column operation are then

performéd.
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9, =

‘0 0 0 0 0 -1 3 0 -1

0O 0 0 0 O ©0 0 2 -1

0O 0 0 0 0 0 -1 -1

||\)

There remain no row operations involving rows 1, 2, and 3 or the sfill
unused rows 8, 9, and 10 which result in an increased number of zeros,
consequently the procedure is finished. Two zero. pairs have been gained,
so an- optimum QQT contains 56 zeros for this graph. The resulting optimum
fundamental set of segs is shown in Figure L(b).

In the example jﬁst concluded, procedure I led to an optimum set of
fundamental segs. It cannot be guaranteed to do so however. To be ab-
solutely certain that a set of fundamental segs is maximally orthogonal,
it is necessary to essentially check all combinations of zero-producing
operations, not just those which at some stage can in themselves increase
the number of zeros in the admittance matrix. While the number of funda-
mental seg sets containing combinations of segs corresponding to zero- ’
producing operations and stars is likely to be considerably smaller than
ﬁnﬁz, the total number of fundamental sets of segs for a graph with n
vertices, it is likely to remain a iarge number. One further simplifi-

cation which can reduce the total labor is to make explicit all possible
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interactions. This will be referred to a procedure II.

Procedure ITI will be given by example only, using the graph of Figure
5. This graph is an example of one for which procedure I will fail to
yield a maximally orthogonal set of fundamental segs. The first step in
procedure II is to construct an AAT matrix with a vertex of maximum degree
as reference. For the graph of Figure 5, the only possible reference
choice is vertex 10. The only information needed at present is the _
presence or absence of edges, hence it is convenient to utilize the
diagonal matrix addresses as row and column number markers and to mark

nonzero entries with the symbol X. Zero entries are simply left blank.

The reference row is shown immediately below the AA? matrix.

1 x X X ]
X 2 X
X X 3 X
X b X X X
am’ = X 5 X
X X X 6 X
X 7T X X
X 8 X
_ X X X 9

X 0 X X 0 X X 0 X
There are three zeros in the deleted row, and since the rows which can
produce them ére disjoint, there are no combinations of operations which
need be considered. Label the three zero-producing operations aé a, b,

and ¢ and mark in the zero entries of the matrix the labels of the
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Example of a graph showing an optimum choice of a fundamental
set of segs
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operations which can lose that zero. For example, summing the first three
rows to produce the first reference zero can lose zeros in any of the 1k,

2k, 26, or 36 positions, so these entries and their main diagonal reflec-

tions are labelled with the letter corresponding to this operation. When

this is done for all three operations, the result is as shown below.

— —

1 X X ab b X

X 2 X a a

ab a X y X X be ¢ X

e c X 8 X

N X b be X X 9]
This labelling makes all possible interactions explicit and thus is
a considerable aid in finding combinations of operations which interact
by having their zero losses in the same matrix addresses. It is seen from
the above matrix that adding rows 5 and 6 to row 4 produces one zero and
loses two, but both losses are in matrix locations where interactions are
possible. Performing the three indicated operations results in the pro-
duction of three zero pairs and the loss of two, for a net improvement of
one zero pair. The corresponding maximally orthogonal fundamental basis
set of segs is shown on the graph of Figure 5. Note that the fact that
the sets of rows whose members summed to produce zeros were disjoint made

this example an exceptionally easy one. Ordinarily considerably more
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" labor would be involved.

The trial and error involved in the steps of procedure I is primarily
an effort to locate multiple segs for which m; -'bi can be less than for
a star. BSince all possible such segs are relatively few and are rea@ily
determined by inspection of é graph, in most cases it is possible to write
by inspection the set of segs the procedure will evolve. Similarly, the
type of interaction demonstrated in procedure II necessarily has a dis-
tinctive geometric appearance, and thus lends itself to being found by
inspection. The considerable amount of labor involved in the procedure
is then the price of describing a pattern-recognition process algebraically.
Moreover, there is a strong correlation between the distinctiveness of_Phg
geometric appearance and the amount of improvement in orthogonality that
can be realized. Those types of graphs for which an optimum QQT matrix
has substantially more zeros than does an optimum‘AA? matrix tend toward
one of the formats shown in Figure 6. The "dumbbell" graph of Figure 6(b)
has relatively few multiple segs, but each gifes g'relatively large im-
provement over the star it replaces. On the other hand, each multiple seg
of the ladder network of Figure 6(a) gains only one zero pair over the
star it replaces, but this type of graph has a maximum number of such
multiple segs. It is interesting to note that optimum sets of segs for
ladder networks derivable from Figure 6(a) by the deletion of any combina-
tion of cross—coupling edges will be the same as the set indicated on the
Figure except possibly for an inversion of the up-and-down pattern of stars.

If the restriction on interlocking segs is removed, the pfoblem

becomes considerably more complex. It appears for several reasons that a



L8

(v)

Figure 6. Types of graphs for which relatiw}ely large improvements in
orthogonality can be realized
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basis set of segs containing interlocking segs should not have greater
orthogonality than some fundamental basis for the same graph, but no
general proof of this was found. One mathematically tractable approach

is to replace interlocking pairs of segs by non-interlocking segs pairwise.
Suppoée 9 and qj are an interlocking pair of segs for a graph. They then
partition the vertices of the graph into four sets, shown as sets Wys Wy
wé, and W) in Figure T(a). As discussed in the proof of Lemma 19, q; and
qj may be considered to perform the essential function of partitioning the
vertices of the graph so that three vertices, no two of which are in the
same set w

k

to contain one of these vertices are marked with dots in Figure 7. Thus

, are partitioned into different sets. The vertex sets assumed

~any other pair of segs partitioning the vertices of the graph in a manner
that the dot-marked sets W, are not in the same set can validly replace

9 and qj in ény basis. If the restriction is added that the segs re- '
placing qQ; and q,j must’ be composed of)edges contained in the union of q;
and qj; the resulting replacement of s and q_'j by a non—interlockiﬁg pair.
of segs will be termed a block decomposition of 9 and qj. As shown in
Figure T, an interlocking pair of segs has seven block decompositions.
The reason for restricting attention to block decompositions is one of
mathematical convenience in that the adjacencies of segs formed in this
manner may'be determined in terms of the adjacencies of the interlocking
pair 9 and qj.

One question which might be logically asked is the following. In

view of the relatively large choice of ways to block decompose a pair of

interlocking segs, is it possible that one of these decompositions can
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always be found which if performed does not increase the adjacency of a
basis? The answer to this question, unfortunately, is no. Conditions for
which the decomposition of Figure T(h) can decrease the orthogonality of
a basis are given in the proof of Theorem 19. If conditions under which
the remaining six decompositions will increése the adjacency of a basis are
computed, it is found that it is possible to conjure up graphs with asso-
‘ciated basis sets of segs in which every possible block decomposition of
an interlocking pair of segs decreases the orthogonality of the basis.
Such a graph and set of segs are shown in Figure 8. This counter-exaﬁple
has the additional property that one of the possible block decompositions,
the one shown in Figure T(h), reduces the set of segs to a fundamental set.
In the special case that every subset of a basis set of segs which is
composed entirely of interlocking pairs of segs contains precisely two
segs, it is proven in Theorem 19 that a pairwise block decomposition can
be performed on such interlocking seg pairs without increasing the ad-
jacency of the basis. Corollary 19 then extends this cc.clusion to state
that in this special case, a maximally orthogonal basis can always be
found which is also a fundamental set. This suggests that if'a subset
composed entirely of interlocking pairs of segs contains m segs, then a
block decomposition simultaneously replacing all m segs might always
exist which would not increase the adjacency of the basis. If a subset
composed entirely of interlocking pairs of segs contains m members, it
partitions the vertices of the graph into at least 2ﬁ and at most 2 ver-
tex sets. Suppose the subset partitions the verticesvof the graph into

not more than m(m -~ 1) + 2 vertex sets in a manner that the relationships




52

Figure 8. Graph with set of segs in which every possible block decomposi-
tion of a9 and qj decreases the orthogonality -
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between the segs and the vertex sets can be represented by a two-dimen-
sional Venn diagram. An illustration of such a diagram for the case of
five interlocking segs is given in Figure 9. The five circles represent
segs and the twenty-two numbered regions represent vertex sets. Since
the m interlocking segs must be reducible to stars, there must be m + 1
vertices located in m + 1 different vertex sets in a manner that no two
pairs of these verticés are partitioned by only one of the m segs. Any
other segs reducible to the same stars can then replace the m interlocking
segs. In terms of Figure 9, the circles can alﬁays be drawn so that one
of the vertices is in region 22, and the remaining five vertices can be
distributed in any of the remaining vertex sets subject to the restric-
tions that no two can be in the same vertex set and each circle (seg)

must contain one in its interior. It is convenient to mark each vertéx
.set containing such a vertex with a dot. Since it is assumed that no
other segs of the basis to which the m interlocking segs belong is inter-
locked with any of the m segs, all remaining segs of the basis are such
that their edges are all incident upon vertices in a single vertex set.

In terms of Figure 9, this means that every other seg can be represented
as a closed contour which does not cross over any of the existing lines

of the Figure. The process of finding a block decomposition of all m
interlocking segs in a manner that the adjacency of the basis is not in-
creaséd then has a simple interpretation in terms of the Venn diagram.
Consider that the line segments between crossovers on the diagram are freé
to be connected in any fashion at the crossovers. Then if a subset of the

line segments can be formed into closed contours that do not intersect
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themselves and which have no line segments in common in a manner that the
dot-marked regions are all separated from one another, the resulting con-
tours will represent the desired decomposition. Two examples of the pro-
cess are shown in Figure 10. In.the first example the dot-marked regions
were chosen to be 6, 7, 1k, 16, 18, and 22. Sihce these dot-marked re-
gions are not contiguous, the segs resulting from the decomposition all
Eorrespond to single vertex sets (except region 22, which is now combined
with all the remaininé regions). In the second example the dot-marked
regions were chosen to be 1, 7, 12, 13, 21, and 22. Note that in neither
example is the desired decomposition unique. The above procedure has been
applied to all allowable combinations of dot-marked régions for diagrams
representing two, three, four, and five interlocking segs. It was found
that with very little practice the desired decomposition could be written
by inspection. |

In the event the vertex sets formed by the m interlocking segs cannot
be represented by a two-dimensional Venn diagram, the theory of a block
decomposition is unaffected but the process of actually finding a decom-
position is somewhat more difficult. The procedure is as follows. Asso-
ciate with each seg qi the corresponding vertex set wqi not containing a
designated reference vertex and label each of the 2" vertex subsets by the

indices of the vertex sets containing that subset. Thus vertex set O is

the set of all vertices not in any qu’ vertex set 1 is in qu only, ver-
tex set 134 is in Wél’ wq3, and th only, and so forth. To ensure that a

set of m vertex sets represents independent segs it is only necessary to

ascertain that all m indices are represented in & manner that no two
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Figure 10.

Two examples of block decomposition of interlocking segs on a
Venn diagram -
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indices are associated with one vertex set only. By analogy with the
property of contiguity in a Venn diagram, two vertex sets are said to be
contiguous if one can be converted into the other by the addition or dele-
tion of a single index. Thus vertex sets 12 and 13 are not contiguous,
but sets 12 and 2 or sets 12 and 125‘are contiguous. The requirement that
a block decomposition not increase the adjacency of a seg basis can then
be stated as follows. If the vertex sets representing any two segs are
disjoint, none of the sets representing one seg can be contiguous to any
of the sets representing the other, and if the vertex sets representing
any two segs have a common set, one group of sets must -also contain every
set which is contiguous to thé common set. For example, if m equals five
and the dot-marked vertex sets are chosen to be 1, 2, 13, 1%, and 135, a
suitable block décomposition consists of sets 2, 1h4, 135, (i3 + 135 + 15
+ 35 + 1345 + 1235), and (L + 3 + 4 + 5+ 13 + 1k + 15 + 34 + 35 + 45

+ 123 + 125 + 134 + 135 + 145 + 235 + 345 + 1235 + 1345 + 12345). As in
the case of the Venn diagram representation, it has been verified that
suitable decompositions exist for all possible cémbinations of dot-marked
vertex éets generated by five or fewer interlocking segs. No way was
found to generalize this result to prove that such a decomposition exists
for any number of interlocking segs.

In much of the discussion thus far the restriction has been made that
the Q and R matrices appearing in the product QRT are equal. The last
topic considered will be concerned with the possible advantages of relax=-
iﬁg this restriction.  The first question to be answered involves the

nunmber of additional zero entries that can be obtained in an optimum QRT
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matrix over an optimum PPT for a graph if P, Q, and R are unrestricted
seg matrices. Since'Q and R both represent bases for the same seg space,
one can be converted into the other by means of a nonsingular transforma-

T. Then if the row operations represented by D

tion, so that QBT = DRR
increase the number of off-diagonal zero entries in RRT, the corresponding
column operations can ﬁé performed to obtain additional zero entries.

Thus if QRT is optimum, it can have more zero entries than‘an optimum PPT
only by virtue of diagonal zero entries. Since the segs of Q and R can
always be ordered so that they partition the same n-1 vertex pairs, a
diagonal zero entry implies that there must be two equally good non-ad-
jacent choices of segs partitioning the same vertex pair. Thus one single
- diagonal zero can often be attained. For example, the very simple graph
and segs shown in Figure 11 result in QRT having threé zero entries while
at most two can be attained if the seg matricés are restricted to be equal.
Graphs for which an optimum QRT contains more than one additional zero
than an optimum PPT mabtrix are rather rare. Figure 12 is an example in
which two additional zeros are gained. It thus appears that the number of
zero entries which can be gained by allowing Q and R to be different is
sharply limited and‘probably not worth the loss of symmetry in.the coeffi-
cient matrix. The real value of allowing Q and R to be different occurs
in those situations where one of the matrices is largely or wholly pre-
scribed. Suppose, for example, that R is specified to be a fundamental
cut-set matrix based on a particular tree. This type of specification
often occurs in sitﬁations in which either it is desired to prescribe the

independent node variables in terms of which the equations are written or
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Figure 12. Graph with two sets of segs Q and R for which QRT gains two
diagonal zero entries —



61

it is desired to control the location of symbols representing certain
admittances in the coefficient matrix array so as to expedite a subsequent
matrix partitioning operation. The specified R may be such that RRT
attains few or none of the possible number of zero entries attainable for
the given graph, but another set of segs Q may ﬁearly always be chosen so
that QRT contains most of the attainable zero entries. It is only neces-
sary to base Q on a tree whose branches are, insofar as possible, chords

of the previously prescribed tree to ensure that QRT will be a good if not

optimum choice of seg bases.
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IV. CONCLUSIONS

The stated purpose of this investigation was to find procedures for
formulating nodal equations for an electrical network which would be op-
timum or nearly so in the sense of being maximally uncoupled. The follow-
ing conclusions are accordingly noted. An upper bound on the maximum num-
ber of zero entries which.can be achieved in a coefficient matrix for
generalized nodal equations is given by twice the number of non-adjacent
vertex pairs in the corresponding graph. This number is equal to the num-
ber of zero entries in an indefinite admittance matrix for the network
under consideration. In many cases this upper bound cannot be attained.
The separable parts of a separable graph represent unrelated problems
that are best handled separately, so all conclusions will be assumed to
apply to connected nonseparable graphs only. There is very little ad-
vantage in choosing Q and R of the coefficient matrix QYRT to be different
seg matrices except in the case that one or the other of them i; largely
or wholly prescribed. In the latter event the segs in question would
ordinarily be a fundamental set based on a tree of the graph (possibly
augmented with zero admittance-weight edges). Choosing the other set of
segs to be a fundamental set based on another tree whose branchég are in-
sofar as possible chords of the first tree ensures that the resulting set
of equations will be a good if not optimum choice.

The choice of an incidence set of segs as the set Q will always re-
sult in QYQT being optimum or nearly so.i If Q is restricted to be a funda-
mental set, algebraic procedures can be followed to find a maximally orthogo-

nal set of segs. These procedures are inefficient in that they require a
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considerable amount of trial and error, and the improvement in the number
of zeros in an optimum QXQ? coefficient matrix over an optimum AXA? matrix
will seldom if ever be worth the labor involved. A network analyst can
easily learn to determine an optimum set of segs simply by inspection of
most graphs, however, by learning to recognize distinctive geometric
patterns in the graph. Those graphs whose AXA? matrices admit of sub-
stantial improvement tend to approach one of the formats shown in

Figure 6.

In the event that Q is not restricted to be a fundamental seg matrix,
the problem becomes considerably more complex. It appears virtually cer-
tain from several aspects that at least one of the maximally orthogonal
basis sets of segs which can be written for any graph will be a funda-
mental set, but no proof was found for this statement. A purely geometric
means was found for reducing interlocking segs to non-interlocking ones
without increasing the adjacency of a basis, however it was not verified

that this procedure is applicable to all possible cases.

—_—
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VII. APPENDIX

Linear graph theory not only provides electrical network analysis with
firm foundations and versatile manipulative tools, but also allows geo-
metric insight to be applied to algebraic processes. It thus often happens-
that algebraic processes can be handled by inspection or nearly so in
problems studied from a graph-theoretic viewpoint. Such procedures should
not be considered mere tricks or short-cuts, but rather effectively making
use of one of the major advantages often accompanying the use of this
po#erful tool. Three procedures of particular interest to the formula-
tion of nodai equations will be given and demonstrated by examples. In
all cases, the correspondence between graph and electrical network and the
restrictions imposed on networks will be as they have been throughout this
investigation. That is, the nodes of the electrical network correspond
one-to-one with the vertices of the graph and the graph has an edge ad-
joining a vertex pair if there is a current path between the corresponding
network nodes, and the network is assumed to be reducible to a two-

terminal component representation.

A. Determining the Node Variables Associated With a Given Set of Segs

A set of generalized nodal equations may be written in matrix form
as PYQTVn = PI where P and Q are seg matrices, Y is an element admittance
matrix, I is a source matrix, and Vn is the node variable matrix. The
elemeqﬁs of Vn are node-pair voltages or sums of node-pair voltages and
are determined by seg matrix Q only. Q and Vn enter into a set of nodal
equations via what i1s known as the node transformation, QTVn = Bb? where

Vb is the column matrix whose elements are the node-pair voltages



67

associated with each branch of the electrical network. In order that each
possible node-pair voltage of a network correspond to an edge of the graph
of the network, it is convenient to assume that a given graph is fully
connected, that is, that every vertex pair-of the graph is connected by

an edge. -This is no restriction, however, because any graph can be made
fully connected by augmenting it with zero admittance~weight edges without
affecting any sets of nodal equations based on that graph. For a graph

with n vertices the matrix Vb is then a column matrix whose _—_E:___

rows represent every possible node-pair voltage of the network correspond-
ing to the graph. But only n - 1 of these voltages may be independently
specified, and all remaining voltages must then bg expressible as linear
combinations of the specified voltages. The n - 1 rows of column matrix
Vn are such an independent set, and the a rows of QT each define
the particular linear combination of the elements of Vn which is equal to
the node-pair voltage in the corresponding row of»V£. In a pictorial
representation of segs on a geometric graph, each nonzero entry in QT
corresponds to a seg unavoidably crossing over an edge. The particular
linear combination of node variables forming any particular node-pair
voltage is thus explicitly presented schematically. It is this fact that
allows the rapid determination of node variables from a sketch of segs on
a graph.

As examples of the technique, sets of node variables will be found
for the graphs of Figure 13. The symbol v, will be used both to denocte

the ith vertex and to represent the potential of the corresponding network

node with respect to any arbitrary reference. The node variable associated
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(a)

(v)

Figure 13. Examples used to demonstrate the determination of node
variables '
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with a seg 4 will be denoted as ti' By convention, the edge orientation
is that of the assumed direction of conventional current flow in the cor-
responding network, and so is useful for describing a network branch vol-
tage in terms of a node-pair voltage. The edge orientations do not enter
into the determination of node variables, however. The orientations
associgted with segs are arbitrary and sefve to determiqe the signs of
entfies in the seg matrix. In Figure 13(a) the voltage across branch ac
of the circuit will be Vo = Vao and since this nodg—pair voltage appears
in only one seg, this must be the node variable associated with that seg.
The orientation as§igned the seg is_in the direction from a to ¢, so

=V, = Ve Similarly, edge cb is cut by seg 9, only, SOV . = V. =V .

Va1 Q2 b c

In the event it had not been noticed that q, was the only seg separating
vertex pair c¢b, one could also utilize vertex pair ab to write

V -V, =V _ =¥ and rearranging

a b ql q2° al

results in qu = (va - vc) -.(vé - vb) = vy -7V, as before. The entire

Substituting the known value of v

set of node variables will be node-pair voltages if and only if every seg

is the only seg separating some vertex pair, that is, if the set of segs

is a fundamental set. |
An'example of a non-fundamental set of segs is given in Figure 13(b).

Seg 9 is found to be the only seg separating vertices b and a and is

oriented from b to a, so le N Seg 9, is the only seg separating
vertices ¢ and b and is oriented from c to b, so vq2 =V, T Ve Similarly,

vqh = va-— ve, but q3 is not the only seg separating any vertex pair. We
choose any vertex pair separated by q3, say vertices d and a, and write

Vg =V, TV + v Substituting the known value for v . and rearranging

a a3 a2° a2
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results in v _ = (v

a3

chosen, the equation to be solved would have been v, - v =V | - vV __,
d c a3 gl

a- va) + (vb - vc). If vertices ¢ and d had been

which would lead to the same result as before for v If vertices d and-

q3°
e had been chosen the equation to be solved would have involved three node

variables but again would lead to the same result.

B. Determining Whether Or Not a Given Set of Segs Is Independent

The determination of whether or not a given set of segs is independent
may be rapidly accomplished by reducing all the segs to stars, and because
the independence of a set of segs does not depend on the edge structure
_Pf_a graph, it is convenient to work entirely with vertex sets. It is
entirely possible that an independent set of segs for a direeted graph
will cease to be independent if the edge orientations are removed, but
this circumstance is sufficiently rare that the computational advantages
of modulo 2 algebra justify attempting this approach first. If the modulo
2 reduction process results in an independent set of stars (one for each
vertex except for the reference), the original set of segs ﬁas independent.
If in the course of the reduction two segs are made equal then either the
set of segs is not independent or the set of segs was one which would
cease to be independent if edge orientations were removed. In the latter
case one can either use ordinary algebra to effect the reduction process
or simply inspect the geometric pattern formed by the segs on the graph.
If a reference vertex is selected and all segs are sketched on the gee-
metric graph as closed contours not containing the reference vertex, then
all sets of segs which cease to be independent when edge orientations are

removed will have a subset giving the appearance of a closed chain.
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As an example of the process of determining whether a given set of
segs is independent, consider the graph and set of segs given in Figure
14(a). If vertex c is arbitrarily chosen to be reference and all segs
represented by the vertex set they generaté ﬁhich does not contain c, one

possible modulo 2 reduction process proceeds as given below.

9 = def d d d - d a
q2 = ef ef ef ef ef £
q3 = ad ad a a a a
qh = ab ab ab b b b
qs = abde abde abe abe e e

The first column is the initial set of segs. The second column is the
result of adding (modulo 2) row 2 to row 1 in the first column. ‘Then
adding row 1 of the second column to rows 3 and 5 of that column results
in the vertex sets shown in the third column. The procedure is continued
until an independent set of stars is achieved, thus the initial set of
segs is independent.

In the example of Figure 14(b), one modulo 2 reduction process is as
follows. Vertex 4 has arbitrarily been chosen fo be reference.

g = ac ac

9, = ab be
q3 = be bc'
Here the modulo 2 reduction process has failed. If the segs are sketched
as closed contours not containing the reference vertex, it is seen that

they do indeed form a closed chain. It is thus still possible that this

set of segs is independent. To verify that it is, an ordinary algebra
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(a)

(v)

Figure 1k, Examples used to demonstrate the determination of whether or
not a given set of segs is independent



73

reduction process is performed as given below.

ql =a+ec a+c¢ a+ec a+ec a
L, = a + Db ¢c -Db c=-D> c -5 b
q3 =b +ec b +ec 2c c c

The reduction process successfully leads to an independent set of stars,

hence the original set of segs is an independent set.

C. Writing the QXR? Coefficient Matrix By Inspéction

'If the segs of seg sets Q and R are sketched on a graph, the elements
of the matrix product QYRT can be determined directly by inspection if the
electrical network and graph are as discussed in the beginning of this
Appendix. The procedure simply amounts to performing the indicated matrix
operations of QYRT visually, and is as follows. Let Yij be anbelement of
Q,YRT and let 9 and rj be the segs represented by the ith and jth rows of
Q and R respectively. Then Yij equals the algebraic sum of admittance
weights of edges common to a; and rj, where each such edge admittance
weight is used with its given sign if q; and rj are similarly oriented
with respect to that edge and with its sign reversed if Q and rj are
oppositely oriepted With respect to that edge.

he graph and sets of segs given in‘Figure 15 will be used to illus-

trate the procedure. Segs 4y and r, have one edge, bec, in.common and are

1

similarly oriented with respect to be, so Yll =y

be where ybc is the

admittance weight of edge bc. Segs 9 and r, have edges be and ac in

2

common and are oppositely oriented with respect to both, so

Y10 5 = Vpo = Vo

The continuation of this process results in the matrix below.



Th

Figure 15. Example used to demonstrate the determination of QYRT
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(ybc) (-ybc' - V) (yad)
ar = \(y,) -y ()
0 ‘(-ycd) ‘(—yac' - ¥4

In the event that Q and R are chosen to be equal, the ith diagonal element
of QYQT will consist of simply the sum of the weight factors of the edges

of qi.
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