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I. lïïTRODUCTIOK 

A. Problem Statement 

For that large class of electrical problems which can he modeled as 

limped networks, Kirchhoff's voltage law—which states that the sum of 

the voltages around any closed loop is zero—and Kirchhoff's current law— 

which in its generalized form states that the net current outflow from a 

point or finite group of points is zero—are very fundamental network 

properties which are the foundations of network analysis. If the voltage-

current relationships are known for every branch of the network, the use 

of the Kirchhoff equations results in the formulation of equations which 

completely describe the network. Two procedures have been developed for 

systematically applying the Kirchhoff laws to a network. These two, which 

differ essentially only in the order in which the Kirchhoff laws are 

utilized,are known as the loop current method and the node voltage method. 

For most networks there are many possible choices of independent sets of 

Kirchhoff equations, hence there are many ways to formulate loop and node 

equations. The purpose of this investigation is to find formulation pro­

cedures which lead to an independent set of network equations which are 

optimum or near-optimum in the sense of being maximally uncoupled. Since 

the loop current and node voltage formulations are so interrelated, atten­

tion will be restricted to the node voltage formulation only, with the 

expectation that similar results could be found for the loop current 

formulation. 

The problem to be investigated, simply stated, is this. Given an 

interconnection diagram for a lumped electrical network, how can one write 
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an independent set of equations in which the variables are linear combina­

tions of node voltages in a manner such that the number of zeros in the 

coefficient matrix is maximized? Mote that the problem differs from a 

normal co-ordinate (eigenvector) problem in that it matters only whether 

or not there is a current path between a pair of nodes, with no use being 

made of the admittance value of this path. The class of electrical net­

works to which this investigation applies is limited to those finite 

lumped networks which can be represented as an interconnection of two-

terminal elements having no closed loops of infinite admittance elements 

(short circuits). The practical effect of these restrictions is to rule 

out unsymmetrical mutual couplings and perfectly coupled transformers. 

The method of attack on the problem is to decompose the coefficient matrix 

of the nodal equations into constituent matrices by the use of linear 

graph theory. 

B. Establishing the Graph Model of the Problem 

Busacker and Saaty (l) formally define an abstract directed graph to 

consist of a nonempty set V, a set E disjoint from V, and a mapping of E 

into the cartesian product VxV. Since a graph is an abstract entity, a 

correspondence must be chosen between its elements and the elements of the 

physical problem under consideration. The correspondence.chosen is to 

relate the nodes of the electrical network to the elements of the set V 

and the current paths of the network to the elements of the set E. This 

choice is a very simple and natural one because the geometric graph 

isomorphic to the abstract graph defined above has the appearance of a 

skeleton of the electrical network. This particular choice of 
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correspondence is the reason that the class of electrical networks studied 

was restricted to those reducible to an interconnection of two-terminal 

elements in a manner that no closed loops of infinite admittance elements 

result. Parallel circuit elements will he considered to be combined into 

a single current path, so the corresponding graph will have no parallel 

edges. Also, self-loops have no meaning in an electrical circuit and will 

not appear in the corresponding graph, thus the graph to be used is re­

stricted to have no parallel edges and no self-loops. Busacker and Saaty 

(l) term such a graph a "simple" directed graph. 

In order that a consistent reference convention be followed in relat­

ing the voltage and current in the individual two-terminal elements, it is 

necessary to use a directed rather than a non-directed graph. Since the 

network has been restricted to be composed of two-terminal components only, 

every pair of vertices which are joined by a directed edge with admittance 

weight ŷ  ̂are also joined by an oppositely directed edge of weight -ŷ .̂ 

Note that the edge orientations have nothing to do with direction of cur­

rent flow but simply determine the signs of the weight factors to be used 

in a graph operation such as describing a path or disconnecting set. Since 

the graph to be used contains oppositely directed edges with weights of 

equal magnitude but opposite sign between every adjacent pair of vertices, 

it is conventional in the electrical engineering literature to draw the 

geometric graph with a single directed edge joining adjacent vertices. 

It is then understood that in an operation with an orientation confluent 

to the edge orientation the weight factor is used with its given sign, and 

in an operation with orientation counterfluent to the edge orientation. 
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the weight factor is used with the negative of its given sign. 

A graph is said to be separable if it contains an articulation point. 

An articulation point of a connected graph G is a vertex such that the 

subgraph obtained by deleting this vertex and all edges incident upon it 

from G is disconnected. Separable graphs and disconnected graphs (includ­

ing isolated vertices) are not very interesting from a nodal equation 

point of view because the formulation of equations for each separated or 

separable part can be handled as a problem not related to the other graph 

parts. Restricting the problem to connected nonseparable graphs is not 

really a restriction, however, since then an optimum overall matrix can 

always be written as a direct sum matrix containing the optimum matrices 

for each separable or separated part. 

The major graph-theoretic concept of use in this investigation is 

that of a vertex segregation or seg. Some of the properties of segs are 

discussed in Reed (3) and in Reed (4). A seg is defined as follows. Given 

a graph with the set of vertices V, partition the vertices into two all-

inclusive mutually-exclusive non-empty sets w and w. Then the set of all 

edges joining a vertex of w to a vertex of w constitutes a seg. Many of 

the useful properties of a seg of a graph do not depend on the edge struc­

ture of the graph, hence it is sometimes convenient to consider the seg to 

be a set of vertices. À knowledge of the elements of either vertex set w 

or vertex set w for a given graph is sufficient to completely describe a 

seg. Any seg for which one of the partitioned vertex sets consists of a 

single vertex is referred to as a star, and all segs which are not stars 

will be referred to as multiple segs. Any two segs corresponding to 
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partitions which cannot he drawn on a geometric graph without crossing 

over one another are defined to be interlocking segs. A more formal defi­

nition is as follows. Let w., w., w., and w. he the vertex sets generated 
1 1 J J 

by segs q. and q.. respectively. Then q. and q_. are said to be interlocked 
 ̂ J i- J 

if and only if neither w. nor w. is a proper subset of either w. or w.. 
11 J J 

Another concept closely allied to that of vertex segregation is that 

of cut-set. The term cut-set, as commonly used in the electrical engineer­

ing literature, refers to a set of edges which is a special case of a seg. 

A cut-set is a set of edges which is a seg and which if removed from a 

graph increases the number of connected parts of the graph by one. Thus 

if a graph is connected, a set of edges corresponding to a seg is also a 

cut-set only if its removal from the graph separates the graph into pre­

cisely two connected parts. Another viewpoint is that a seg is always a 

cut-set or an edge-disjoint union of cut-sets. 

A complete seg matrix has a row for each possible seg of a graph 

and a column for each edge. Each seg is assigned an arbitrary orientation, 

and the matrix elements are assigned values as follows: 

g.. =1 if edge j is in seg i and their orientations agree, 
ij 

q.. = -1 if edge j is in seg i and their orientations are 
ij 

opposite, 

q = 0 if edge j is not in seg i. 
Ij 

For a graph with n vertices, the complete seg matrix will have 2̂  ̂ -1 

rows corresponding to the number of different ways n objects can be parti­

tioned into two non-empty sets. If the graph is connected, the rank of 

is always n-1. This is established in Seshu and Reed (6) for cut-sets 
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(their Theorem 5-1̂ )j and the proof carries over directly for segs. A very 

important set of suhmatrices of consists of those matrices obtained by 

deleting all but n-1 rows of in a manner such that the resulting matrix 

is of rank n-1. Such matrices will be called simply "seg matrices". A 

' 1 • n—2 _ 
graph with n vertices will be described by -,—ryr H (2 - 2̂ ) different 

p=0 
seg matrices, where different matrices means matrices not derivable from one 

another by permutations or row or column sign changes. Every cut-set matrix 

of a graph is also a submatrix of Q̂ , but the number of cut-sets of a graph 

depends on the edge structure as well as the number of vertices of a graph. 

Another important submatrix of is Â , the matrix composed of those n rows 

which correspond to stars. If the segs of this matrix are all assigned 

orientations from the smaller to the larger vertex sets, the resulting 

matrix is known as the complete vertex incidence matrix for a graph, and 

any of the n-1 matrices formed by deleting a single row from the complete 

vertex incidence matrix will be referred to as simply "incidence matrices" 

and denoted by the letter A. The vertex corresponding to the deleted row 

will be termed the "reference vertex". Still another important set of sub-

matrices of is composed of those seg matrices for which every seg is the 

only seg partitioning some vertex pair of the graph. Such matrices will be 

referred to as "fundamental seg matrices". A fundamental cut-set matrix is 

defined to be a cut-set matrix for which every cut-set contains an edge not 

contained in any other cut-set of the matrix. A fundamental cut-set matrix 

is thus a special case of a fundamental seg matrix, one in which every ver­

tex pair separated by only one seg is an' adjacent pair. 

Seshu and Balabanian (5) and Seshu and Reed (6) show that a set of 

T 
generalized nodal equations can be written as QYR = QI where Q and R 
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are cut-set matrices, Y is the branch admittance matrix, is the node 

variable matrix, and I is the source matrix. Their development is unaffect­

ed if Q and R are considered to be seg rather than cut-set matrices. Since 

only networks composed of two-terminal elements will be considered in this 

study, Y can be assumed to be diagonal. For this condition it is not 

T 
necessary to actually perform the matrix multiplications of QYR to form 

the coefficient matrix, for the elements of the coefficient matrix may be 

written directly by inspection. The procedure for accomplishing this is 

given in the Appendix. The elements of the column matrix will be node 

variables, that is, linear combinations of node voltages, and this matrix 

can in most cases be written by inspection. Techniques for determining the 

entries in will also be included in the Appendix. 

Since Y is by hypothesis a diagonal matrix, it will weight the nonzero 

T 
entries of QYR but will not affect the number of zero entries for the 

general case of unspecified element admittances. Hence we need only study 

T T T 
QR . Every zero entry in QYR will also be zero in QR , but because leav­

ing Y out of the matrix product is equivalent to assigning all the admit-

T 
tance weights equal values, cancellations can occur resulting in QR having 

T 
zeros not present in QYR . This presents no problem for future develop-

T 
ments, but to ensure that no confusion arises those zeros of QR which are 

T 
also zeros of QYR for any diagonal Y will be termed "essential zeros" 

while those arising from cancellations of specific admittances will be 

termed "non-essential zeros" whenever a possibility of ambiguity is 

present. 

T 
The matrix product QR has a useful vector interpretation. Q and R 
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can "both "be considered to be sets of segs which are bases for the complete 

set of segs which can be associated with a graph, and every zero entry in 

T 
QR corresponds to a seg of Q being orthogonal to a seg of R in the scalar 

product sense. A somewhat more restrictive definition of seg orthogonality 

is necessary if only essential zeros are to be considered. For this reason 

two segs will be defined to be orthogonal if and only if for every nonzero 

entry in one the corresponding entry in the other is zero. This.defini­

tion is equivalent to stating that any pair of segs which do not have a 

common edge are orthogonal. Conversely, a pair of segs which have a common 

edge are said to be adjacent. This implies that every seg of a connected 

graph is adjacent to itself. The orthogonality of a basis set of segs is 

defined to be the number of orthogonal pairs of segs in that set, and the 

adjacency of a basis set of segs is defined to be the number of adjacent 

pairs of segs in that set. Thus twice the orthogonality of a basis set Q 

T 
gives the number of essential zero entries in QQ and twice the adjacency 

of Q gives the number of nonzero and non-essential zero entries. 

T 
The matrix A YA is known as the indefinite admittance matrix and . 

a a 

has many interesting properties and uses. A discussion of this matrix may 

be found in Huelsman (2). 

C. Preliminary Results 

It is interesting to ponder on how many essentially different sets of 

nodal equations can be written for an unspecified network with n nodes 

under the restrictions which have been assumed. This is given by the 

square of the number of different seg matrices which can be written for 

the graph, and so is a very large number. For example, for n as small as 
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n = 6 there are nearly seven billion different sets of nodal equations 

describing the network. Thus it is not normally feasible to catalog all 

different sets of nodal equations for a network as a means of finding an 

optimum set. The number of different seg matrices is finite for any given 

graph, however, so the existence,of at least one maximally uncoupled set 

of equations is assured. In the special case that the two seg matrices 

used in formulating the equation set are equal, a seg matrix yielding 

maximally uncoupled equations will be a basis set of segs containing a 

maximum number of orthogonal pairs of segs. 

Consider a complete graph, that is, a graph in which every vertex is 

adjacent to every other vertex. Since every vertex or group of vertices 

is connected to every other vertex for -such a graph, no orthogonal pairs 

T 
of segs can be found. Thus the QYR coefficient matrix can have no essen­

tial zeros and every seg matrix represents a maximally orthogonal set of 

segs. If a single edge is removed from a complete graph, the resultant 

graph has precisely one orthogonal seg pair. This seg pair is the two 

stars corresponding to the two vertices upon which the removed edge had 

been incident. In this case the coefficient matrix can have a maximum of 

two zeros and this maximum will be achieved if both Q and R contain the 

two stars referred to above. Any seg matrix containing these two stars 

will then represent a maximally orthogonal basis set of segs for this 

graph. The continuation of this argument suggests, and it will later be 

proved, that an upper bound on the number of essential zeros achievable 

in a coefficient matrix for generalized nodal equations for a connected 

graph is given by twice the number of edges by which the graph fails to 

be a complete graph. 
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II. THEOREMS MD PROOFS 

As an organizational convenience, the formal statements of theorems 

and their proofs will be given in this chapter, but a discussion of their 

implications will be deferred to the succeeding chapter. 

Theorem 1. Every vertex pair of a graph must be partitioned by at 

least one seg of a basis set. 

Proof. A basis set of segs for an n-vertex graph G consists of n-1 

segs. If a vertex pair is not separated by any seg of a set of n-1 segs, 

coalesce that vertex pair to form a new graph G'. This will not affect 

the set of n-1 segs, but since G' has n-1 vertices, at most n-2 of the set 

of segs can be independent, and so the set cannot be a basis for G. 

Theorem 2. If a member of a basis set of segs is the only seg 

partitioning some vertex pair of a graph, then every other vertex 

pair partitioned by that seg must also be partitioned by at least 

one other seg. 

Proof. Suppose a set of n-1 segs is given for a graph G, one seg of 

which is the only seg separating two vertex pairs of G. Coalesce both 

vertex pairs to form a graph G' with n-2 vertices and delete the seg re­

ferred to above from the set. The remaining segs are unaffected by this 

operation, but now a set of h-2 segs is written for a graph with n-2 

vertices. Thus the remaining segs cannot all be independent, and the 

original set cannot be a basis. 

Theorem 3. A set of n-1 segs of an n-vertex graph is independent 

if and only if it is reducible to an incidence matrix by means of 

a nonsingular transformation. That is, a matrix Q whose rows 

correspond to segs is a seg matrix if and only if Q = DA where A is 
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an incidence matrix and D is nonsingular. 

Proof. The rank of A is n-1 by definition, and since D is nonsingular, 

the rank of Q is n-1, hence Q is a seg matrix. Conversely, if Q is a seg 

matrix it has rank n-1. But A is also a s eg matrix, so Q and A must be 

related by some nonsingular transformation matrix D. 

Theorem 4. If a multiple s eg q.̂  is independent of a set of segs 

F, there exist at least two other segs q.. and q, which are also in-
J k 

dependent of F and are such that is a proper subset of and 

is a proper subset of where ŵ  is a vertex set generated by , 

ŵ  is a vertex set generated by and ŵ  and ŵ  are the two comple­

mentary vertex sets generated by q.̂ . 

Proof. The two vertex sets generated by a multiple seg each contain 

two or more vertices, hence either may be subdivided. Then may be 

written as the sum of the segs corresponding to the subdivision, and at 

least one of these must be independent of F if is. Subdividing the 

other vertex set yields another s eg independent of F in similar fashion. 

Corollary Ua. If a star is independent of a set of segs F, there 

exists at least one other seg q̂  which is also independent of F and 

is such that ŵ  is a proper subset of w ., where ŵ  is a vertex set 
1 VI 1 

generated by q̂  and ŵ  ̂is the vertex set generated by q̂  ̂which does 

not consist of a single vertex. 

Proof. This is a special case of Theorem U in which only one of the 

vertex sets generated by the given seg has any proper subsets. 

Corollary Ub. If a multiple seg q̂  is independent of a set of segs 

F, there exist at least two stars q̂  ̂and q̂  ̂which are also inde­

pendent of F. 
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Proof. Theorem 4 can "be applied repeatedly until single vertex sets 

are achieved. 

Theorem 5- If a graph containing n vertices has a vertex of degree 

n-1, the incidence matrix A for which the maximum degree vertex is 

T 
reference is such that AA has the maximum possible number of essen­

tial zeros for a seg matrix product. 

T 
Proof. Let Q and R be seg matrices such that QR is a,n optimum 

coefficient matrix. Suppose a seg of the set composing Q is orthogonal 

to segs r j, r̂ , ..., and r̂  of R. Each seg partitions the vertices of the 

graph into two disjoint sets, one of which contains the reference vertex 

and one of which does not. Denote the latter vertex sets by w ., w ., ..., 
qi' rj' 

and ŵ  where the subscripts indicate the corresponding seg. The inter­

section of w . with any of w w or w is void, for if w . has 
qi rj rk' rm qi 

a vertex in common with, say, ŵ ,̂ then q̂  and r̂  must have a common edge, 

the edge joining the common vertex to the reference vertex. Thus q̂  can 

be written as a sum of stars, every one of which is orthogonal to every 

seg to which q̂  is orthogonal. By Corollary Ub, at least one of these 

stars must be independent of the remaining segs of Q, so q̂  can be replaced 

by this star with no loss in orthogonality. The process can then be 

applied to every seg in Q and in R until both Q and R have been reduced 

to A. 

Theorem 6. Given a connected graph G, an upper bound on the number 

of possible essential zero entries in any nodal equation coefficient 

T 
matrix is given by the number of zero entries in A A , where A is 

8, 8. EL 

the complete vertex incidence matrix for the graph. 

J 
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T 
Proof. Consider the indefinite admittance matrix A YA with a row 

a a 
T T • 

and column deleted to form AYA . Any QYR can be realized "by performing 

T T T T 
rank-preserving row and column operations on AYA , that is, QYR = DAYA E 

where D and E are nonsingular. In an indefinite admittance matrix, every 

row and column sums to zero, and since the individual values of admittance 

are left unspecified, this is the only way that row and column operations 

can produce zero entries. Thus it is only possible to perform a row 

T 
(column) operation which produces a zero entry in AYA if the deleted row 

(column) has a zero entry in the column (row) in which the zero is produced. 

Once such a rw (column) operation is performed, the column (row) in which 

the zero entry was produced no longer sums to zero, and so can no longer 

"be used to produce a zero entry. Thus the maximum possible number of zeros 

which can be produced is equal to the number in the deleted row and column. 

Corollary 6. An upper bound on the number of essential zetos of an 

T 
optimum QR for a connected graph is given by twice the number of 

edges by which the graph fails to be a complete graph, that is, by 

n(n-l) 2e where n is the number of vertices of the graph and e is 

the number of edges. 

Proof. Let A be the complete incidence matrix for a graph not con-

T 
taining isolated vertices. Then the matrix A A contains two zeros for 

€L 9, 

every non-adjacent vertex pair. 

Theorem T. For any connected graph G, the incidence matrix A with 

T 
vertex v. as reference is such that AA contains at worst n-l-p . 

1 VI 

less zero pairs than the maximum attainable number where n is the 

number of vertices in G and is the degree of v̂ . 
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Proof. By Theorem 6 the maximum attainable number of zeros is at 

T 
most the number of zeros of Deleting the row and column correspond-

T T T « 
ing to V. from A A converts A A into the AA 'matrix described in the 

1 a a a a 
T 

theorem. The v. row and column of A A contain a total of two zeros for 
1 a a 

each vertex which is not adjacent to v., and there are n-l-p . such ver-
1 VI 

tices. 

T 
Theorem 8. An optimum QR matrix for a connected non-separable graph 

"Y , T 
' contains at most 2n - 6 more zeros than any AA matrix of the graph, 

where n is the number of vertices of the graph and A is an incidence 

matrix. 

T 
Proof. The matrix Â Â  for a connected non-separable graph contains 

at least three nonzero entries in every row and in every column, so if a 

T 
row and column are deleted to form an AA matrix with m zeros, the maximum 

T 
number of zeros in any QP matrix is m + 2(n-3). 

Theorem 9* The maximum possible percentage improvement of an optimum 

T T 2 
QR matrix over an optimum AA matrix is given by  ̂x 100 for any 

connected graph. 

T th 
Proof. Consider the matrix A A . Assume that the i row has m 

a a 

zeros. If the corresponding vertex is an optimum choice for reference 

T T 
for an AA matrix, every other row has at least m zeros, and the AA will 

have at least nm - 2m zeros where n is the number of vertices in the graph. 

T 
Since any QR matrix can have at most nm zeros then, the maximum possible 

„ , . . . . nm - (nm-2m) 2 
fractional improvement is r-—- = ——. 

 ̂ nm - 2m n-2 

Theorem 10. Let m̂  be the number of vertices in the subgraph 

composed of the edges of a seg together with their endpoint ver­

tices and let p̂  be the number of separate paits of Ĝ . Then for a 
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given graph a seg is adjacent to at least - 1 other memhers 

of any basis set of segs for the graph. 

Proof. The number of branches in a forest for the subgraph is mu - p 

(Busacker and Saaty (l) Theorem 1-6), hence m. - p. is the number of ad-
11 

jacent vertex pairs of the subgraph which must be partitioned by segs in 

any basis. By Theorem 2, can be the only seg partitioning at most one 

vertex pair, so q.̂  must be adjacent to at least m_ - pu - 1 segs in any 

basis. 

Corollary 10a. A star is adjacent to at least - 1 other 

members of any basis set of segs for a graph, where is the degree 

of the vertex corresponding to . 

Proof. By Theorem 10, q_ . is adjacent to at least m . - p . - 1 
vj -̂ vj 

other segs of any basis. But since q . is a star p . = 1 and m . - 1 
VJ VJ 

Corollary 10b. The orthogonality of a s eg q.̂  is at most 

(n-2) - (m̂  - p̂  - l) = n - 1 - m_ + p̂  in any basis set of segs, 

where n is the number of vertices in the graph. The orthogonality 

of a star is at most n - 1 - p̂  ̂in any basis set of segs. 

Proof. The corollary is a restât orient of Theorem 10 and Corollary 

10a in terms of orthogonality rather than adjacency. 

Theorem 11. In a complete set of segs for a graph having n 

vertices, any given s eg is orthogonal to 2̂  ̂~ ̂  ~ ™i î̂  - 1 

other members of Q . 
a 

Proof. Consider the subgraph composed of the edges of together 

with their m̂  endpoint vertices. First assume the subgraph is connected. 
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Then there will be n - mu stars which are not adjacent to q.̂ , and all segs 

obtainable as a sum of these stars taken two at a time, three at a time, 

etc., will also be orthogonal to q.̂ . The sum of a sequence of p objects 

taken 1, 2, . . ., p at a time is 2̂  - 1, so there will be 2̂  ̂ î̂  -1 

possible segs orthogonal to If now q.̂  is assumed to have p̂  separate 

parts, segs composed of combinations of the separate parts along with 

combinations of nonadjacent stars will also be orthogonal to Thus 

there will be 2̂ î ~ 2̂  ̂" "̂ î  - 1 or 2̂  ̂" ̂ " ̂i ^̂ î  _ i segs of 

orthogonal to q.̂ . 

Lemma 12a. In a basis set of segs composed entirely of stars, every 

star q̂ j is adjacent to precisely - â  ̂other members of the basis, 

where a . is a number equal to 1 if vertex v. is adjacent to the 

reference vertex and zero otherwise. 

Proof. If the vertex v̂  corresponding to q̂ j is not adjacent to the 

reference vertex v̂ , every edge of q̂  ̂will be in precisely two segs, q̂  ̂

and the seg corresponding to the other vertex incident upon this edge, 

hence q̂  ̂will be adjacent to precisely other segs of the basis. If 

vertex v. is adjacent to the reference vertex v , the edge joining v. to 
J  ̂ J 

V will be in no other s eg but q and all other edges incident upon v. will 
n vj • J 

be in precisely two segs as before, hence q̂  ̂will be adjacent to precisely 

p_̂ j - 1 other segs of the basis. 

Lemma 12b. If all the segs in a basis set are restricted to be stars, 

the orthogonality of the set is maximized by choosing a highest-

degree vertex as reference. 

Proof. By Lemma 12a and Corollary 10a, a basis set of segs composed 
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entirely of stars has the property that for any specified reference vertex 

each star is adjacent to the fewest possible other stars. Choosing any 

highest-degree vertex as reference ensures that the remaining stars have 

minimum p and that a maximum number of them are adjacent to the reference 

vertex. 

Theorem 12. If for any given graph there are no multiple segs 

with the property that m. - p. < p . < p , where v. and v are ver-
1 1 — vj — vn' J n 

tices belonging to and respectively, then a set of stars with 

a highest degree vertex as reference is a maximally orthogonal basis 

set of segs. 

Proof. Theorem 10 and the hypothesis of the theorem ensure that no 

multiple segs exist for the given graph which can be adjacent to fewer 

other segs of any basis than a set of stars. Lemmas 12a and 12b then 

complete the proof. 

Theorem 13. If a s eg q.̂  which is not a cut-set is independent of a 

set of segs F and is adjacent to m of the members of F, there exists 

another s eg q_̂  which is a cut-set and is also independent of F and 

is adjacent to at most m of the members of F. 

Proof. Let ŵ  and ŵ  be the vertex partitions generated by s eg q.̂ . 

Then if q.̂  is not a cut-set one of the vertex sets, say ŵ , must be 

further divisible into vertex sets w. and w, , where the union of w. and 
J k J 

w, equals w. and the intersection of w. and w, is void, in a manner such 
k . 1 J k 

that no vertex of ŵ  is adjacent to any vertex of ŵ . Consider the segs 

q̂ j and q̂  ̂corresponding to vertex sets ŵ  and ŵ . q̂  is the sum of q̂  ̂

and so at least one of the latter must be independent if q̂  is. 
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Further, and are edge-disjoint, so q̂  is adjacent to every seg 

which is adjacent to either q̂  ̂or q̂  ̂or both. Thus at least one of q̂  ̂

and. q̂ ,̂ say q̂ ,̂ can replace q̂  in an independent set of segs with no 

increase in adjacency. If q̂  ̂is a cut-set the theorem is proved; if not, 

vertex set ŵ  can "be further subdivided and the above process repeated 

until a cut-set is obtained. 

Corollary 13. No maximally orthogonal basis set of segs need contain 

a seg which is not a cut-set. 

Proof. Suppose some maximally orthogonal basis set of segs contains 

segs which are not cut-sets. Then by Theorem 13, each of these segs can 

be replaced by another which is a cut-set with no increase in adjacency. 

The set of cut-sets so formed must then also be a maximally orthogonal 

basis set. 

Theorem l4. The n-1 independent node variables associated with a set 

of generalized nodal equations can be node-pair voltages if and only 

if the set of segs associated with the node transformation is a funda­

mental set, that is, if and only if every seg in the set is the only 

seg partitioning some vertex pair of the graph. 

Proof. Assume that the graph is fully connected, that is, every ver­

tex pair is connected by an edge. No generality is lost by this assump­

tion since any graph may be augmented by zero admittance-weight edges 

without affecting the nodal equations associated with the graph. The node 

T T 
transformation is then Q where Q is the transpose of a s eg matrix, 

is a colimin matrix whose entries are node variables, and is a column 

matrix whose entries are node-pair voltages. contains a row for each 
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possible node-pair voltage of the graph and contains one less row than 

the network under consideration has nodes, which is the largest number of 

voltages that can be independently specified for an electrical network. 

The node transformation is a singular transformation expressing a set of 

variables, the entries of V̂ , in terms of a basis set, the entries of V̂ . 

First suppose that Q is a fundamental seg matrix. Then every row of 

Q will contain an en%ry not in any other row, hence Q must contain a unit 

T 
matrix. After a suitable reordering of the rows of Q and V̂ , the node 

transformation may be written in partitioned form as 

_u_ 
V 

]b_ll 

4 
n V 

b 12 

from which UV̂  ~ ̂ n ~ ̂ b 11' every entry in is a node-pair vol­

tage, every entry in must also be a node-pair voltage. 

Conversely, suppose the entries of are all node-pair voltages. 

Then this set of node-pair voltages must be a subset of those node-pair 

voltages which.are entries of Thus, after a suitable reordering of 

the rows of V̂ , may be partitioned in such a fashion that it contains 

T 
as a submatrix. After conformally partitioning Q , the node transforma­

tion equation becomes 

1̂ V 
V 
n 

52 

V 
n 

\l2 

Expanding, = UV̂ , and - U) = 0. If is not a unit 

matrix, then a linear combination of the elements of will be equal to 

zero, contradicting the hypothesis that a set of node variables is an 
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T 
independent set. Therefore, is a unit matrix. Thus, Q contains a unit 

matrix of maximum possible rank and so must be a fundamental s eg matrix. 

Theorem 15. A basis set of segs for a graph will be a fundamental 

set if and only if the set. does not contain any interlocked segs. 

Proof. First assume that the basis set of segs contains an inter­

locked pair of sags, q. and q_i. Then this pair of segs divides the ver-
1 0 

tices of the graph into four nonvoid sets, and -ŵ . Let q_̂  be 

the seg partitioning vertex sets and from and and let q.̂  be 

the seg partitioning and from and If q.̂  is the only seg par­

titioning a vertex pair, the vertices of the pair must belong to sets 

and or to and azid if q.̂  is the only seg partitioning a vertex 

pair, the vertices of this pair must belong to sets and Wg or to and 

ŵ . Any combination of these possibilities involves three of the four 

vertex sets, say Wg, and By Theorem 2, every vertex pair in which 

one vertex is in and the other in the union of and must be 

partitioned by at least two segs. But if the set of segs is to be funda­

mental, there must be n-1 vertex pairs (for a graph with n vertices) each 

partitioned by only one seg, and the independence of the set requires that 

one of these vertex pairs have one vertex in and the other in the union 

of ŵ , Wg, and ŵ . Thus a basis set of segs containing interlocked segs 

cannot be a fundamental set. 

Conversely, assume that the basis set of segs is not a fundamental 

set. Then at least one seg of the set, say must be such that every 

vertex pair partitioned by q.̂  is also partitioned by another seg of the 

set. If we designate any vertex of the graph as reference and character­

ize each seg q_. by the vertex set w. it generates which does not contain 
 ̂ J 
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the reference vertex, then if v. is not a proper subset of some w. every 
1 J 

vertex in must be contained in another vertex set. If none of these 

vertex sets correspond to interlocked segs, the union of some vertex-dis­

joint subset of them will be thus the segs cannot be an independent 

set. If every vertex in is not contained in another vertex set, the 

requirement that every vertex pair partitioned by be also partitioned 

by other segs requires that be a proper subset of some v. and that every 

vertex that is in w. but not w. must be contained in another vertex set. 
J 1 

The result is as in the previous case. Thus a non-fundamental basis set 

of segs must contain interlocked segs. 

Corollary 15- The node variables associated vith a set of generalized 

nodal equations can be node-pair voltages if and only if the set does 

not contain any interlocked segs. 

Proof. Apply Theorem 15 to Theorem lU. 

Theorem l6. Let a s eg q̂  be a member of a seg basis for a graph G. 

Then if q̂  is not interlocked with any other member of the basis, q̂  

must be adjacent to at least m̂  - b̂  other members of the basis, 

where m̂  is the number of vertices which are adjacent to an edge of 

and b̂  is a number such that : 

bu = 2 if q̂  is the only seg separating a vertex pair and both 

vertices of the pair are adjacent to an edge of q̂  

b̂  = 1 if q̂  is the only seg separating a vertex pair and pre­

cisely one vertex of the pair is adjacent to an edge of q̂  

b̂  = 0 otherwise. 

Proof. Consider the subgraph G' composed of the edges belonging to 
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and their endpoint vertices. Since the set of segs is independent, 

every vertex of G' must he partitioned from every other vertex of 6 by at 

least one seg, and no seg can he the only seg partitioning more than-one 

vertex pair. Since hy hypothesis none of the segs of the hasis are inter­

locked with q.̂ , will he adjacent to at least one s eg for each vertex 

of G' except those one or two vertices which are part of a vertex pair 

separated only hy 

Theorem 17- Let Q he a fundamental seg matrix and let D he the non-

singular transformation matrix relating Q to an incidence matrix A, 

so that Q = DA, and let a consistent reference convention he adopted 

for Q and A. Then for a suitable ordering of the rows and columns 

of Q and A, D can always be written as the sum of a unit matrix and 

a strictly lower triangular matrix containing only zeros and ones as 

entries. Moreover, D can be partitioned into a direct sum matrix in 

which each of the diagonal submatrices has a last row in which all 

the entries are ones. Deleting the last row and column from D̂  pro­

duces a new submatrix in which either the last row has all its entries 

ones or the submatrix can be partitioned into a direct sum matrix in 

which each of the submatrices so determined has a last row in which 

all the entries are ones. In either case, the process can be repeated 

until all such submatrices are reduced to first order matrices. 

Proof. The reference vertex, that is, the vertex not' corresponding 

to a star of A, must be a member of at least one vertex pair partitioned 

by only one seg. By Theorem. 15, such segs cannot be interlocked since 

they are to belong to a fundamental set, hence the segs are vertex disjoint 
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and can be written as sums of disjoint sets of stars. Each such seg is 

the only seg partitioning a vertex pair, so one of the stars which sum 

to the seg cannot be in any other seg. The vertex for this star may then 

be considered the reference vertex for the subgraph corresponding to the 

set of stars, and the argument repeated for each subgraph, sub-subgraph, 

etc. 

T 
Corollary 17. Let Y; . be an element of the matrix QYQ for a network 

with a graph G, and let Q be a fundamental seg matrix. Then with a 

consistent reference convention and suitable ordering of the vertices 

of G, 

Y,, = E S y_ 
p=a£i q=b<j 

where y is an indefinite admittance matrix element for the network 
pq. . 

corresponding to G. 

Proof. The corollary is a direct consequence of Theorem 17 with the 

matrix operations written as summations and the fact that y is an ele-
pg. 

T 
ment of AYA for G. 

Theorem I8. Divide the vertices of any given graph into four all-

inclusive mutually-exclusive nonvoid sets, ŵ , ŵ , ŵ , and Wĵ . Desig­

nate the seg corresponding to vertex set ŵ  as q̂ .̂ Define a seg q̂  

to be that seg whose corresponding vertex set ŵ  is the union of ŵ  

and w„ and define a seg q to be that seg whose corresponding vertex 
d. J 

set Wj is the union of Wg and ŵ . Let m̂  and b̂  be as defined in 

Theorem 16 for a seg q̂  in any specified basis not containing inter­

locking segs. Then if q̂  can replace q̂  ̂in an otherwise fixed basis 
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containing if - (m̂  - b̂ ) = c, where c is a num­

ber, it is true that (m -b ) - (m. - b.)_<-c. 
Wj J J 

Proof. Let (m̂  - b ̂ ) - (m. -b.) =c and let 
Wl "WJL 11 

- b̂ )̂ - (nij - bj) = d. Adding these two equations together results 

in 

c + d = - (m̂  - bj) + (m̂ 3 - \g) - (m̂  - bj) 

Define the quantity n to be the number of vertices in vertex set 
It,p. • • q 

•ff, -which are adjacent to vertices in vertex set w and ... and v . Then 
k P q 

the terms may be expanded as follows: 

%1 = -
*1,3 "• ""1,^ " °1,23 - ^1,24 - *1,3% 

+ *2.1 + *3,1 + "4,1 

%3 = ^"3,1 + *3,2 3̂,4 - *3,12 - *3,1% - *3,24 

+ "1,3 + *2,3 %,3 

™i ^^1,3 ^ "1,4 " ^1,34^ ^ (°2,3 "2,% " *2,34) 

+ (»3,1 + *3,2 " °3,12^ ("^,1 * "4,2 " • "4,12 

~ ^^1,2 °1,3 ~ °1,23^ (°2,1 •*" "2,4 " "2,14) 

+
 1—1 

+
 

"3,4 " "3,14) •*" (°̂ ,2 "4,3 " • "4,23 

+ a) = (̂ 2,4 -• °2,lU^ •*' (°2,4 ~ °2,34^ ,2 -

+ (n|,̂ 2 - 0̂ ,23) + " "1,2311' ("3,24 " "3,121' 

+ <\l - "i' + <\3 -

Now investigate the b̂  terms to find conditions for which b̂  can be greater 

than b̂ .̂ By hypothesis q̂  and q̂  ̂can be interchanged in the basis under 

consideration. Thus, if q̂  is the only seg partitioning a given vertex 

pair in the basis, then q̂  ̂will also be the only seg partitioning this 

vertex pair if it replaces q̂ . This requires that one vertex of the pair 



www.manaraa.com

"be in vertex set and the other in If the vertex in is incident 

upon an edge of it must also be incident upon an edge of The ver­

tex in can be incident upon an edge of q̂  but not q̂  ̂only if the ver­

tex is adjacent to a vertex in Wg but not Thus 

'"4,2 - *%.12 - i S3"etry. (n̂  ̂  * b̂ j) > 0 

also, so 

-, (c + d) = - ̂ 2,14) + (̂ 2,4- *2,34) + (%,2 - *4,12 - \ 

+ \î  * (°̂ ,2 ~ °%,23 " * ̂*3) * ̂ \,2h " *1,234̂  

(°3,24 " ̂3,124̂ * 

Now all the bracketed terms on the right hand side of this equation are 

equal to or greater than zero, so - (c + d) ̂  0 and d £ -c. 

Lemma 19. Let interlocking segs q. and q. be members of a basis set 
 ̂ J 

of segs P for a graph, and let q. and q. partition the vertices of 
1 J 

the graph into four sets, ŵ , ŵ , ŵ , and ŵ , in a manner that the 

union of ŵ  and Wg is a vertex set corresponding to q̂  and the union 

of Wg and ŵ  is a vertex set corresponding to q̂ . Define the set of 

segs P' to be.the basis set P with q̂  and q̂  deleted, and let q̂  ̂be 

a seg partitioning vertex set ŵ  from the remaining vertices of the 

graph. Tien at least.one of the sets (P', q̂ ,̂ q̂ )̂ and (P', q̂ , q̂ ĵ ) 

will also be a basis. 

Proof. Apply Corollary 4b to every multiple seg of P'. Then all but 

three of the vertices of the graph will correspond to stars. Further, by 

Theorem 1 no two of these three vertices can be in the same ŵ  since the 

segs are independent, so either ŵ  and ŵ  each contain one vertex or Wg 

and Wĵ  each contain one vertex. The reduction of the members of P' to 
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stars is unaffected if and are replaced "by other segs partitioning 

the same three vertices from one another, hence at least one of (P', 

q̂ )̂ (P', q̂ g, q̂ ĵ ) vill be a basis. 

Theorem 19- If a basis set of segs for a graph contains an inter­

locking pair of segs in which both segs of the pair are not further 

interlocked with any other segs of the set, then the interlocking 

pair may be replaced by a non-interlocking pair with no increase in 

adjacency. 

Proof. Let segs q̂  and q̂  be an interlocking pair as defined in the 

Theorem, and let ŵ , ŵ , ŵ , ŵ  q̂ ,̂ P, and P' be as defined in Lemma 19. 

Then by Lemma 19, q̂  and q̂  can be replaced in the basis by either q̂  ̂and 

q̂ 2 oi" ty q̂  and q̂ |̂ . No generality is lost by assuming that the former 

case is true because the latter case can be converted into the former by 

a suitable relabelling of the vertex sets. Let s represent the set of 
mn 

edges connecting vertex sets ŵ  and ŵ , and let a(ij, kl, ..., mn) be the 

number of segs belonging to P' which contain edges belonging to sets ŝ ,̂ 

s, T, ..., and s but none of the other sets s . Let X , (P') be the 
kl' mn pq qk 

number of segs of P' adjacent to seg q̂ , and let X(Pj) represent the ad­

jacency of a particular basis P̂ . Then the number of segs of P' which are 

adjacent to q̂  less the number adjacent to q̂  ̂may be written as given 

below. 

X̂ ,(P') - X ,(P') = a(23) + a(2U) + a{23,2k) 
qi qwl, 

+ 0(23,3%) + a{2k,3h) 

+ 0(23,24,34) - o(l2) - 0(12,34) . 

Similarly, the number of segs of P' which are adjacent to q̂  less the 
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niimber adjacent to is 

• - ̂ gy3(P') = 0(12) + 0(24) + 0(12,14) 

+ 0(12,24) + o(l4,2U) 

+ 0(12,14,24) - 0(23) - 0(14,23) 

Now if is non-void, will be adjacent to 9.̂  will be adjacent 

to q̂ . If is void, q̂  ̂will not be adjacent to q̂ »̂ T̂ ut q.̂  may or may 

not be adjacent to q̂ . Thus in any event the adjacency of basis 

= (P', q̂ ) less the adjacency of basis P̂  =(P', q̂ ,̂ q̂ )̂ is equal 

to or greater than the sum of the two previously derived equations. 

X(P̂ ) - ̂ (Pg) > 2O(24) + 0(12,i4) + 0(12,24) + 0(14,24) 

+ 0(23,24) + 0(23,34) + O(24,34) 

+ 0(23,24,34) + 0(12,14,24) 

- 0(12,34) - 0(14,23) 

Those segs which contain edges of ŝ g and or edges of ŝ ;̂, 8,nd ŝ  ̂must, 

necessarily be interlocking with q. or q. or both, and by hypotheses P' 
1 J 

contains no such segs. The remaining terms are all inherently non-nega­

tive, so A(P̂ ) - ̂ (Pg) 1. O5 completing the proof. 

Corollary 19- If a maximally orthogonal basis set of segs for a graph 

contains interlocking segs in a manner that both segs of every inter­

locked pair are not further interlocked with any other members of the 

basis, then a fundamental set of segs exists which is also a maximally 

orthogonal basis. 

Proof. Apply Theorem 19 to every such interlocking pair until none 

remain. Then the resulting set is at least as orthogonal as the original 

set and is, by Theorem 15, a fundamental set. 
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III. DISCUSSION 

As a first step in this investigation, some properties of basis sets 

of segs were established in Theorems 1 through 4 and their corollaries. 

Theorems 1 and 2 both have obvious algebraic analogs. Because of the very-

simple structure of incidence matrices. Theorem 3 has practical value as a 

means of constructing more complicated seg matrices or for determining if 

a given set of segs is independent. Theorem k and its corollaries are 

essentially replacement theorems concerned with the existence of segs 

capable of replacing a given seg in an independent set. 

The next several theorems deal with bounds on the number of essential 

zeros attainable as nodal equation coefficient matrix entries. It was 

established in the Introduction that this number is the same as the number 

T 
of essential zeros of QP where Q and R are seg matrices. In all subse-

T 
quent discussion the term "optimum QR " will be understood to refer to the 

nodal equation coefficient matrix having the maximum possible number of 

essential zero entries, and the term "optimum QQ " will refer to a similar 

matrix with the additional restriction that the constituent seg matrices 

are equal. Theorem 5 gives a sufficient condition for which the matrix 

obtained by deleting a row and corresponding column from the indefinite 

T T 
admittance matrix Â YÂ  is an optimum QYR matrix. Theorem 6 gives the 

very basic result that the number of zero entries in an indefinite admit-

T 
tance matrix is an upper bound on the number attainable in an optimum QR 

matrix. It then follows that deleting a row and corresponding column from 

T 
the indefinite admittance matrix to form the matrix AYA loses just those 

zeros which were in the row and column deleted, and Theorems %, 8, and 9 
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are concerned with the number or percentage improvement in the number of 

T T 
zero entries in an optimum QYR matrix over the number in an AYA matrix. 

T 
The fact that an optimum QYR matrix regains as many as possible of 

T 
the zeros lost by deleting a row and column from Â YÂ  suggests the inter­

pretation that the search for this Q and R is equivalent to performing row 

T 
and column operations on AYA to transfer zeros from the deleted row and 

"column by means of the indefinite admittance matrix property thatall rows 

and columns sum to zero. If for example the deleted row has a zero entry 

in the column, the sum of all rows having nonzero entries in the 

column produces a zero in this position. If this sum has more off-

diagonal zero entries than one of its constituent rows, it can replace 

that row and thus in effect transfer a zero out of the deleted row. 

The next topic investigated will be the determination of the minimum 

number of segs of a basis to which a given seg can be adjacent. Since 

any two segs are adjacent if they have a common edge, one might expect a 

close connection between the number of edges of a seg and the minimum 

number of segs to which it is adjacent. The only complication which 

arises is that a seg can contain an edge which does not couple it to any 

other segs to which it is not already adjacent. Such edges have the 

geometric appearance of a cross-coupling. For example, in Figure 1 edge 

ad will cause s eg to be adjacent to any other s eg partitioning vertices 

a and d. But if edge ad is removed from the graph, any seg partitioning 

vertices a and d will still be adjacent to via one or more of edges 

ac, be, and bd. One equivalent way to count the edges of a seg which are 

not cross-coupled is to count the number of vertices which are incident 
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Figure 1. An example of a seg containing a cross-coupled edge 
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upon an edge of the seg and subtract the number of separate parts of the 

subgraph consisting of the edges of the seg together with their endpoint 

vertices. Thus Theorem 10 establishes that in any basis a seg must be 

adjacent to at least as many segs as one less than the number of non-

cross-coupled edges of If q̂  is a star the statement of Theorem 10 

may be simplified because the quantity m̂  - p̂  then reduces to simply the 

degree of the vertex corresponding to the star. Corollary 10a is a re­

statement of Theorem 10 for this condition. Corollary 10b restates Theorem 

10 and Corollary 10a in terms of orthogonality rather than adjacency. 

Interestingly enough, it is a considerably easier task to determine 

how many of the 2̂  ̂  - 1 segs of a complete set of segs for a graph are 

orthogonal to a given seg than to choose an independent set of n-1 segs 

of maximum orthogonality. It is proven in Theorem 11 that a seg q̂  be­

longing to a complete set of segs is orthogonal to 2̂ ~̂̂ ""̂ i~̂ î  - 1 

members of Q̂ . Arranging all the segs of in order of orthogonality and 

choosing the first n-1 independent segs as a basis Q will often but not 

always result in a maximally orthogonal basis since a seg q̂  can be ortho­

gonal to more members of Q but less members of Q than a seg q.. A not-
a J 

able example of this type of seg is one which achieves a low value of 

m̂  - p̂  through large p̂  rather than small m̂ . For example, q̂  in Figure 

2 is such that m̂ -p̂  ̂= 6- 3 = 3. Every other possible seg q̂  for this 

graph has m_ - pu ̂  3, hence q̂  is orthogonal to a maximum number of other 

members of yet q̂  does not belong to any maximally orthogonal basis. 

The reason is apparent from Figure 2. Many of the segs orthogonal to q̂  

are those in which, for example, vertices b and c or f and g are in the same 
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Figure 2. Example of a s eg which is orthogonal to a maximum number of the 
members of Q but is not a member of any maximally orthogonal 
basis 
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vertex set, and such segs will be orthogonal to relatively few other segs. 

In the special case that for every multiple s eg q_̂  of a graph the number 

- p̂  is greater than the degree of every vertex in one of the two ver­

tex sets generated by that multiple seg, it is true that one choice of 

the first n-1 independent segs of a complete set arranged in order of 

orthogonality will be a set of stars. It is shown in Theorem 12 that such 

a set of stars will be a maximally orthogonal set. The hypothesis of 

Theorem 12 is a sufficient but not necessary condition for a set of stars 

to be a maximally orthogonal basis, as evidenced by graphs such as the one 

shown in Figure 2. 

One general statement which can be made is that the segs comprising 

a maximally orthogonal set can always be chosen to be cut-sets, which is 

proven in Corollary 13- If to the hypothesis of Theorem 13 is added the 

restriction that seg q.̂  not be interlocked with any member of F, the 

corollary would be changed to state that maximally orthogonal bases not 

containing interlocking segs cannot contain segs which are not cut-sets. 

By Theorems lU and 15 arid Corollary 15, the following three state­

ments are completely equivalent: 

1. The node variables associated with a basis set of segs are all 

node-pair voltages. 

2. The basis set of segs is a fundamental set. 

3. The basis set of segs contains no interlocking segs. 

Theorem l6 then gives the minimum number of segs of a basis which can be 

adjacent to a given seg with any of the above restrictions added and for 

either of two preconditions or for no preconditions on the remaining 
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members of a basis. Note that if the basis is restricted to consist of 

non-interlocked segs only the number of segs to which a given seg must be 

adjacent is always greater than the number which can be achieved with the 

ban on interlocked segs removed if the subgraph corresponding to the given 

seg has more than one separate part. This verifies that interlocked segs 

are necessary to achieve a minimum adjacency for a seg whose corresponding 

subgraph has more than one separate part. As discussed before, however, 

achieving a minimum adjacency for any one seg by no means ensures that the 

set so formed will have maximum orthogonality. 

T 
The next topic to be discussed is the determination of an optimum QQ 

T 
if Q is restricted to be a fundamental seg matrix. Finding an optimum QQ 

is equivalent to selecting a set Q of n-1 independent segs from a complete 

set of segs Q̂  in a manner that the orthogonality of Q is at least as 

great as that of any other set of n-1 independent segs of Q̂ . A funda­

mental set of segs can be considered to be based on a tree of a complete 

graph, and every graph can be converted into a complete graph without 

affecting the nodal equations describing it by augmenting it with zero 

admittance-weight edges. It would be highly desirable if an algorithm 

could be found which would lead to a tree corresponding to a maximally 

orthogonal fundamental set of segs, but in all probability such an algorithm 

does not exist. Trees corresponding to maximally orthogonal fundamental 

sets of segs for different graphs have little in common, and the addition 

or deletion of a single edge from a graph can profoundly change the charac­

ter of such a tree. This large sensitivity of the choice of an optimum 

set of segs to the edge structure was found to be typical of those cases 
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for which an incidence set was not optimum. As an extreme if somewhat 

pathological example, consider the graph and set of segs given in Figure 3. 

T 
The indicated set of segs gives the best possible QQ matrix—every off-

diagonal entry is zero. If an edge is added between vertices a and f, the 

T 
same set of segs now gives the worst possible QQ matrix, one with no zero 

entries at all. 

The most promising procedure for finding an optimum choice of funda­

mental segs appears to be one which works directly with the matrix product 

QQ̂ . As a first step Theorem 17 gives a characterization of a fundamental 

seg matrix Q in terms of a specific form for the transformation matrix 

which operates on an incidence matrix to produce Q. This in turn leads to 

Corollary 17, which states that if Q is specified to be a fundamental seg 

T 
matrix for a graph G, then an element Y.. of the matrix QYQ may be ex-

pressed as 

i j 

Y,, = Z Z y_ , 
p=a£i g=b<_j 

where y is an indefinite admittance matrix element for the electrical 
pq. 

network corresponding to G. The form of this general term indicates that 

T 
all diagonal elements of QYQ must be nonzero if G is connected. This is 

best seen by writing the diagonal term in expanded form as 

îi ^̂ aa ̂  ̂a(a+l) ̂   ̂̂aî  ^̂ (a+l)a (̂a+l)(a+l) 

* ••• * * •••• + K̂a+l) + ' 

Now Ŷ  ̂is zero only if each bracketed term is zero. But the k̂  ̂bracket­

ed term is zero only if the k̂  ̂vertex is adjacent to a subset of the â  ̂

through î  ̂vertices and no others, and this cannot be true for all 
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Figure 3. Example of sensitivity of orthogonality of a set of segs to the 
edge structure of a graph 



www.manaraa.com

37 

•bracketed terms without contradicting the hypothesis that the graph is 

connected. 

T 
The form of an element of QYQ also allows the following conclusions 

to be drawn concerning the nature of the row and column operations forming 

QYQ̂  from AYÂ : 

1. All necessary operations produce zero entries. 

2. The utility of any given operation can be affected by a subse­

quent operation. 

3. Every necessary row (column) operation involves a summing of 

rows (columns) in which every constituent row (column) contri­

butes to the production or maintenance of a zero entry. 

Examination of the general term reveals that if any entry is zero, then 

that zero would also have been produced by the responsible row or column 

operation alone. The other operation applied to the term, if any, can 

then prevent the gaining of a zero but it cannot aid in the zero production 

process. Interactions between operations are thus wholly negative. This 

conclusion represents a major difference between fundamental and non-

fundamental sets of segs, for if interlocking segs are permitted it is 

T 
possible that under rather stringent conditions a QYQ element can be zero 

even though neither of the operations affecting the element can by them­

selves produce a zero. The fact that the number of zeros gained or lost 

by a particular operation can be affected by a subsequent operation suggests 

T 
that a procedure leading monotonically to an optimum QYQ is not to be 

found. It is even possible, and will later be demonstrated by an example, 

that a sequence of row and column operations can result in a net gain of 
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zeros in cases where none of the operations by themselves produce more 

zeros than they lose. This behavior is possible because two or more oper­

ations can lose zeros in the same matrix address. Because of the property 

that all interactions of operations are negative, only those operations 

need be considered which produce zeros in off-diagonal positions, and in 

each such operation the only rows or columns which need be involved are 

those which are active participants in producing a zero or preventing the 

loss of a zero. 

T 
Two procedures for finding optimum or near-optimum QYQ matrices will 

next be presented and each will be illustrated by means of an example. 

The first procedure is relatively straight forward and direct and realizes 

the maximxjm possible number of zeros in most but not all cases. The second 

procedure involves substantially more trial and error but is guaranteed to 

T 
result in an optimum QYQ matrix. 

The first procedure, hereafter referred to as procedure I, is as 

follows : 

T 
1. Write the A A matrix for the network. 

a a 

2. Select a row with a minimum number of zeros, say the k̂ ,̂ and 

cross it and the corresponding column out. If this row has no zeros, 

the resulting incidence matrix is optimum. If it does, continue the 

procedure. 

3. Choose a column, say the m̂ ,̂ which has a zero in the k̂  ̂row. 

Sum the rows which have nonzero entries in the m̂  ̂column and note 

whether or not the sum has more off-diagonal zero entries than a 

constituent row. If not, repeat for all remaining k̂  ̂row zeros, 

and continue with row operations producing two k̂  ̂row zeros at a 
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which gains zeros or all possibilities have "been exhausted. If the 

latter, the procedure is finished; if the former, continue the 

procedure. 

4. The set of rows determined in step 3 will appear as a group if 

at all in any subsequent operations involving other rows of the 

matrix. If the row operation determined in step 3 does not lose one 

or more zeros in any position in the row, perform the row and corres­

ponding column operations. If it does, check to determine if a larger 

grouping of rows yields a larger net improvement. If not, perform 

the previously indicated row and column operations. If so, find a 

set of rows which either loses no zeros or which has as large a net 

improvement as possible and perform the corresponding row and column 

operations. 

5. Recycle to step 3 and repeat for all combinations of zero-produc­

ing operations for which the rows are proper subsets of the operation 

performed in step 4. 

6. Recycle to step 3 and repeat with the restriction that any new 

row operation will not include any rows used in previous operations 

unless it includes all other rows of that previous operation. 

T 
The matrix desired in step 1 is simply an indefinite admittance 

matrix with all admittances assumed to have unity value, and so is easily 

written by inspection. In step 2, it doesn't really matter which row is 

•chosen as reference, for if a row without a minimum number of zeros is 

chosen, the sum of all remaining rows will be found to correspond to a row 
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operation which yill he performed in step 3, and replacing a row and colimn 

hy the sum of all other rows and columns is simply equivalent to selecting 

a new reference. Theorem l8 justifies not testing combinations containing 

proper subsets of sets of rows whose sum gives an improvement in the number 

of zeros in a row. In step 5 it is not necessary to actually test every 

combination. The only operations which need to be rechecked are those 

which had previously lost precisely as many zeros as they gained. 

As an example of the application of the procedure, a maximally ortho­

gonal basis set of fundamental segs will be found for the graph of Figure 

, T 
4. The Â Â  matrix with the row and column corresponding to vertex T 

chosen as reference is given below. 

2 -1 -1 0 • 0 0 ' 0 . • 0 • 0 • 0 

-1 2 0 -1 • 0 0 0 • 0 • 0 0 

-1 0 3 -1 -1 0 0 0 ' 0 ' 0 

0 -1 -1 3 0 -1 0 0 ' 0 0 

0 0 -1 0 3 -1 -1 0 • 0 0 

0 0 0 -1 -1 3 0 -1 0 0 

0 0 0 0 • -1 0 3 -1 -1 0 

0 0 0 0 0 -1 -1 3 0 -1 

0 0 0 0. 0 0 -1 0 2 -1 

0 0 0 0 0 0 0 -1 -1 2 

T 
As may be verified from the graph or the above matrix, Â Â  has 

n(n-l) - 2e = (iO)(-9) - (2)(13) = 6h zero entries, and an optimum choice 

T 
of reference vertex yields AA matrix with 6h - 2(n-l-p̂ )̂ = 64 

- 2(10-1-3) = 52 zero entries. There are no row operations producing a 
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Figure 4. Example of a graph showing (a) an optimum set of stars and ("b) 
an optimum choice of a fundamental set of segs 
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T 
single reference zero in AA which result in a net improvement in the 

number of zeros, nor are there any involving two reference zeros which 

result in a net improvement. T-he first row operation found which yields 

a net improvement is adding rows 1, 2, 3, and 5 to row k. This operation 

produces zeros in columns 2 and 3 and loses a zero in column 5 for a net 

gain of one. Since the operation loses a zero, larger groupings of rows 

containing rows 1, 2, 3, 4, and 5 are investigated and it is found that 

adding rows 1, 2, 3, h, and 5 to row 6 produces one zero without losing 

any. This row and column operation is then performed, resulting in the 

matrix below. 

~ 2 -1 -1 0 0 G 0 0 0 

-1 2 0 -1 0 0 0 0 0 

-1 0 3 -1 -1 0 0 0 • 0 

0 -1 -1 3 0 0 0 0 0 

0 0 -1 0 3 1 0 0 0 

0 0 0 0 1 2 -1 0 0 

0 0 0 0 0 -1 3 0 -1 

0 0 0 0" 0 0 0 2 -1 

_0 0 0 0 0 0 -1 -1 2 

All combinations of the first five rows are then rechecked and it is found 

that adding rows 1, 2, and U to row 3 now produces one zero without losing 

any. This row operation and the corresponding column operation are then 

performed. 
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2 -1 0 0 0 0 0 0 0 

-1 2 0 -1 0 • 0 0 0 0 

0 0 2 1 -1 0 • 0 ' 0 0 

0 -1 1 3 0 0 0 0 0 

0 0 -1 0 3 1 0 0 0 

0 0 0 0 1 2 -1 0 0 

0 0 0 0 0 -1 3 0 -1 

0 0 0 0 0 ' 0 0 2 -1 

0 0 0 0 0 0 -1 -1 2 

There remain no row operations involving rows 1, 2, and 3 or the still 

unused rows 8, 9s and 10 which result in an increased number of zeros, 

consequently the procedure is finished. Two zero pairs have been gained, 

T 
so an- optimum QQ contains $6 zeros for this graph. The resulting optimum 

fundamental set of segs is shown in Figure 4(b). 

In the example just concluded, procedure I led to an optimum set of 

fundamental segs. It cannot be guaranteed to do so however. To be ab­

solutely certain that a set of fundamental sags is maximally orthogonal, 

it is necessary to essentially check all combinations of zero-producing 

operations, not just those which at some stage can in themselves increase 

the number of zeros in the admittance matrix. While the number of funda­

mental seg sets containing combinations of segs corresponding to zero-

producing operations and stars is likely to be considerably smaller than 

the total number of fundamental sets of segs for a graph with n 

vertices, it is likely to remain a large number. One further simplifi­

cation which can reduce the total labor is to make explicit all possible 
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interactions. This will he referred to a procedure II. 

Procedure II will he given hy example only, using the graph of Figure 

5. This graph is an example of one for which procedure I will fail to 

yield a maximally orthogonal set of fundamental segs. The first step in 

T 
procedure II is to construct an AA matrix with a vertex of maximum degree 

as reference. For the graph of Figure 5s the only possible reference 

choice is vertex 10. The only information needed at present is the 

presence or absence of edges, hence it is convenient to utilize the 

diagonal matrix addresses as row and column number markers and to mark 

nonzero entries with the symbol X. Zero entries are smply left blank. 

T 
The reference row is shown immediately below the AA matrix. 

1 X X X 

X 2 X 

X X 3 X 

X . h X X X 

X 5 X 

X X X 6 X 

X 7 X X 

X 8 X 

X X X 9 

X 0 X X 0 X X 0 X 

There are three zeros in the deleted row, and since the rows which can 

produce them are disjoint, there are no combinations of operations which 

need be considered. Label the three zero-producing operations as a, b, 

and c and mark in the zero entries of the matrix the labels of the 
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set of segs 
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operations which can lose that zero. For example, summing the first three 

rows to produce the first reference zero can lose zeros in any of the l4, 

2k, 26, or 36 positions, so these entries and their main diagonal reflec­

tions are labelled with the letter corresponding to this operation. When 

this is done for all three operations, the result is as shown below. 

~1 X X ab b X 

X 2 X a a 

X X 3 X b ab 

ab a X 1; X X be c X 

b b X 5 X b b 

X a ab X X 6 X c be 

be b X 7 X X 

c c X 8 X 

X b be X X 9 

This labelling makes all possible interactions explicit and thus is 

a considerable aid in finding combinations of operations which interact 

by having their zero losses in the same matrix addresses. It is seen from 

the above matrix that adding rows 5 and 6 to row 4 produces one zero and 

loses two, but both losses are in matrix locations where interactions are 

possible. Performing the three indicated operations results in the pro­

duction of three zero pairs and the loss of two, for a net improvement of 

one zero pair. The corresponding maximally orthogonal fundamental basis 

set of segs is sho'wn on the graph of Figure 5. Note that the fact that 

the sets of rows whose members summed to produce zeros were disjoint made 

this example an exceptionally easy one. Ordinarily considerably more 
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labor would be involved. 

The trial and error involved in the steps of procedure I is primarily 

an effort to locate multiple segs for which m̂  - b̂  can be less than for 

a star. Since all possible such segs are relatively few and are readily 

determined by inspection of a graph, in most cases it is possible to write 

by inspection the set of segs the procedure will evolve. Similarly, the 

type of interaction demonstrated in procedure II necessarily has a dis­

tinctive geometric appearance, and thus lends itself to being found by 

inspection. The considerable amount of labor involved in the procedure 

is then the price of describing a pattern-recognition process algebraically. 

Moreover, there is a strong correlation between the distinctiveness of the 

geometric appearance and the amount of improvement in orthogonality that 

T 
can be realized. Those types of graphs for which an optimum QQ matrix 

T 
has substantially more zeros than does an optimum AA matrix tend toward 

one of the formats shown in Figure 6. The "dumbbell" graph of Figure 6(b) 

has relatively few multiple segs, but each gives a relatively large im­

provement over the star it replaces. On the other hand, each multiple seg 

of the ladder network of Figure 6(a) gains only one zero pair over the 

star it replaces, but this type of graph has a maximum number of such 

multiple segs. It is interesting to note that optimum sets of segs for 

ladder networks derivable from Figure 6(a) by the deletion of any combina­

tion of cross-coupling edges will be the same as the set indicated on the 

Figure except possibly for an inversion of the up-and-down pattern of stars. 

If the restriction on interlocking segs is removed, the problem 

becomes considerably more complex. It appears for several reasons that a 
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Figure 6. Types of graphs for which relatively large improvements in 
orthogonality can be realized 
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basis set of segs containing interlocking segs should not have greater 

orthogonality than some fundamental basis for the same graph, but no 

general proof of this was found. One mathematically tractable approach 

is to replace interlocking pairs of segs by non-interlocking segs pairwise. 

Suppose q. and q. are an interlocking pair of segs for a graph. They then 

partition the vertices of the graph into four sets, shown as sets ŵ , ŵ , 

Wg, and Wĵ  in Figure 7(a). As discussed in the proof of Lemma 19, q.̂  and 

q. may be considered to perform the essential function of partitioning the 
J 

vertices of the graph so that three vertices, no two of which are in the 

same set ŵ , are partitioned into different sets. The vertex sets assumed 

to contain one of these vertices are marked with dots in Figure 7- Thus 

any other pair of segs partitioning the vertices of the graph in a manner 

that the dot-marked sets ŵ  are not in the same set can validly replace 

q. and q. in any basis. If the restriction is added that the segs re- ' 
 ̂ J 

placing q̂  and q̂  musf be composed of edges contained in the union of q̂  

and q., the resulting replacement of q. and q. by a non-interlocking pair 
J  ̂ J 

of segs will be termed a block decomposition of q. and q.. As shown in 
 ̂ J 

Figure 7, an interlocking pair of segs has seven block decompositions. 

The reason for restricting attention to block decompositions is one of 

mathematical convenience in that the adjacencies of segs formed in this 

manner may be determined in terms of the adjacencies of the interlocking 

pair q̂  and q̂ . 

One question which might be logically asked is the following. In 

view of the relatively large choice of ways to block decompose a pair of 

interlocking segs, is it possible that one of these decompositions can 
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Figure 7. An example of interlocking segs and their seven possible block 
decompositions 
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always "be found which if performed does not increase the adjacency of a 

basis? The answer to this question, unfortunately, is no. Conditions for 

which the decomposition of Figure 7(h) can decrease the orthogonality of 

a basis are given in the proof of Theorem 19. If conditions under which 

the remaining six decompositions will increase the adjacency of a basis are 

computed, it is found that it is possible to conjure up graphs with asso­

ciated basis sets of segs in which every possible block decomposition of 

an interlocking pair of segs decreases the orthogonality of the basis. 

Such a graph and set of segs are shown in Figure 8. This counter-example 

has the additional property that one of the possible block decompositions, 

the one shown in Figure 7(h), reduces the set of segs to a fundamental set. 

In the special case that every subset of a basis set of segs which is 

composed entirely of interlocking pairs of segs contains precisely two 

segs, it is proven in Theorem 19* that a pairwise block decomposition can 

be performed on such interlocking s eg pairs without increasing the ad­

jacency of the basis. Corollary 19 then extends this ccuclusion to state 

that in this special case, a maximally orthogonal basis can always be 

found which is also a fundamental set. This suggests that if a subset 

composed entirely of interlocking pairs of segs contains m segs, then a 

block decomposition simultaneously replacing all m segs might always 

exist which would not increase the adjacency of the basis. If a subset 

composed entirely of interlocking pairs of segs contains m members, it 

partitions the vertices of the graph into at least 2m and at most 2̂  ver­

tex sets. Suppose the subset partitions the vertices of the graph into 

not more than m(m - l) + 2 vertex sets in a manner that the relationships 
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Figure 8. Graph with set of segs in which every possible block decomposi­
tion of and decreases the orthogonality • 
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"between the segs and the vertex sets can be represented "by a two-dimen-

sional Venn diagram. An illustration of such a diagram for the case of 

five interlocking segs is given in Figure 9« The five circles represent 

segs and the twenty-two numbered regions represent vertex sets. Since 

the m interlocking segs must be reducible to stars, there must be m + 1 

vertices located in m + 1 different vertex sets in a manner that no two 

pairs of these vertices are partitioned by only one of the m segs. Any 

other segs reducible to the same stars can then replace the m interlocking 

segs. In terms of Figure 9, the circles can always be drawn so that one 

of the vertices is in region 22, and the remaining five vertices can be 

distributed in any of the remaining vertex sets subject to the restric­

tions that ho two can be in the same vertex set and each circle (seg) 

must contain one in its interior. It is convenient to mark each vertex 

set containing such a vertex with a dot. Since it is assumed that no 

other segs of the basis to which the m interlocking segs belong is inter­

locked with any of the m segs, all remaining segs of the basis are such 

that their edges are all incident upon vertices in a single vertex set. 

In terms of Figure 9, this means that every other seg can be represented 

as a closed contour which does not cross over any of the existing lines 

of the Figure. The process of finding a block decomposition of all m 

interlocking segs in a manner that the adjacency of the basis is not in­

creased then has a simple interpretation in terms of the Venn diagram. 

Consider that the line segments between crossovers on the diagram are free 

to be connected in any fashion at the crossovers. Then if a subset of the 

line segments can be formed into closed contours that do not intersect 
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Figure 9. The representation of a set of five interlocking segs as 
diagram 
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themselves and which have no line segments in common in a manner that the 

dot-marked regions are all separated from one another, the resulting con­

tours will represent the desired decomposition. Two examples of the pro­

cess are shown in Figure 10. In the first example the dot-marked regions 

were chosen to he 6, 7s 1̂ , l6, l8, and 22. Since these dot-marked re­

gions are not contiguous, the segs resulting from the decomposition all 

correspond to single vertex sets (except region 22, which is now combined 

with all the remaining regions). In the second example the dot-marked 

regions were chosen to be 1, T, 12, 13, 21, and 22. Note that in neither 

example is the desired decomposition unique. The above procedure has been 

applied to all allowable combinations of dot-marked regions for diagrams 

representing two, three, four, and five interlocking segs. It was found 

that with very little practice the desired decomposition could be written 

by inspection. 

In the event the vertex sets formed by the m interlocking segs cannot 

be represented by a two-dimensional Venn diagram, the theory of a block 

decomposition is unaffected but the process of actually finding a decom­

position is somewhat more difficult. The procedure is as follows. Asso­

ciate with each s eg q.̂  the corresponding vertex set ŵ  ̂not containing a 

designated reference vertex and label each of the 2̂  vertex subsets by the 

indices of the vertex sets containing that subset. Thus vertex set 0 is 

the set of all vertices not in any vertex set 1 is in ŵ  ̂only, ver­

tex set 134 is in w T , w _, and w ,, only, and so forth. To ensure that a 
ql q.3 g.4 

set of m vertex sets represents independent segs it is only necessary to 

ascertain that all m indices are represented in a manner that no two 
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Figure 10. Two examples of "block decomposition of interlocking segs on a 
Venn diagram 
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indices are associated with one vertex set only. By analogy with the 

property of contiguity in a Venn diagram, two vertex sets are said to be 

contiguous if one can be converted into the other by the addition or dele­

tion of a single index. Thus vertex sets 12 and 13 are not contiguous, 

but sets 12 and 2 or sets 12 and 125 are contiguous. The requirement that 

a block decomposition not increase the adjacency of a seg basis can then 

be stated as follows. If the vertex sets representing any two segs are 

disjoint, none of the sets representing one seg can be contiguous to any 

of the sets representing the other, and if the vertex sets representing 

any two segs have a common set, one group of sets must also contain every 

set which is contiguous to the common set. For example, if m equals five 

and the dot-marked vertex sets are chosen to be 1, 2, 13, l4, and 135, a 

suitable block decomposition consists of sets 2, lU, 135, (13 + 135 + 15 

+ 35 + 1345 + 1235), and (l + 3 + 4 + 5 + 13 + 1% + 15 + 34 + 35 + ̂ 5 

+ 123 + 125 + 134 + 135 + 145 + 235 + 345 + 1235 + 1345 + 12345). As in 

the case of the Venn diagram representation, it has been verified that 

suitable decompositions exist for all possible combinations of dot-marked 

vertex sets generated by five or fewer interlocking segs. Ho way was 

found to generalize this result to prove that such a decomposition exists 

for any number of interlocking segs. 

In much of the discussion thus far the restriction has been made that 

T 
the Q and R matrices appearing in the product QB are equal. The last 

topic considered will be concerned with the possible advantages of relax­

ing this restriction. The first question to be answered involves the 

T 
number of additional zero entries that can be obtained in an optimum QR 
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T 
matrix over an optimum PP for a graph if P, Q, and R are unrestricted 

s eg matrices. Since Q and R "both represent "bases for the same s eg space, 

one can be converted into the other by means of a nonsingular transfonna-

T T 
tion, so that QR = DRR . Then if the row operations represented by D 

T 
increase the number of off-diagonal zero entries in RR , the corresponding 

column operations can be performed to obtain additional zero entries. 

T • T 
Thus if QR is optimum, it can have more zero entries than an optimum PP 

only by virtue of diagonal zero entries. Since the segs of Q and R can 

always be ordered so that they partition the same n-1 vertex pairs, a 

diagonal zero entry implies that there must be two equally good non-ad­

jacent choices of segs partitioning the same vertex pair. Thus one single 

diagonal zero can often be attained. For example, the very simple graph 

T 
and segs shown in Figure 11 result in QR having three zero entries while 

at most two can be attained if the seg matrices are restricted to be equal. 

T 
Graphs for which an optimum QR contains more than one additional zero 

T 
than an optimum PP matrix are rather rare. Figure 12 is an example in 

which two additional zeros are gained. It thus appears that the number of 

zero entries which can be gained by allowing Q and R to be different is 

sharply limited and probably not worth the loss of symmetry in the coeffi­

cient matrix. The real value of allowing Q and R to be different occurs 

in those situations where one of the matrices is largely or wholly pre­

scribed. Suppose, for example, that R is specified to be a fundamental 

cut-set matrix based on a particular tree. This type of specification 

often occurs in situations in which either it is desired to prescribe the 

independent node variables in terms of which the equations are written or 
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'1 «6 

T 
Figure 11. Graph with two sets of segs Q and R for which QR gains 

diagonal zero entry 
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1% 

T 
Figure 12. Graph with two sets of segs Q and R for which QR gains two 

diagonal zero entries 
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it is desired to control the location of symbols representing certain 

admittances in the coefficient matrix array so as to expedite a subsequent 

T matrix partitioning operation. The specified R may be such that ER 

attains few or none of the possible number of zero entries attainable for 

the given graph, but another set of segs Q may nearly always be chosen so 

T 
that QR contains most of the attainable zero entries. It is only neces­

sary to base Q on a tree whose branches are, insofar as possible, chords 

T of the previously prescribed tree to ensure that QR will be a good if not 

optimum choice of seg bases. 
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IV. CONCLUSIONS 

The stated purpose of this investigation was to find procedures for 

formulating nodal equations for an electrical network which would be op­

timum or nearly so in the sense of being maximally uncoupled. The follow­

ing conclusions are accordingly noted. An upper bound on the maximum num­

ber of zero entries which.can be achieved in a coefficient matrix for 

generalized nodal equations is given by twice the number of non-adjacent 

vertex pairs in the corresponding graph. This number is equal to the num­

ber of zero entries in an indefinite admittance matrix for the network 

under consideration. In many cases this upper bound cannot be attained. 

The separable parts of a separable graph represent unrelated problems 

that are best handled separately, so all conclusions will be assumed to 

apply to connected nonseparable graphs only. There is very little ad-

T 
vantage in choosing Q and R of the coefficient matrix QYE to be different 

seg matrices except in the case that one or the other of them is largely 

or wholly prescribed. In the latter event the segs in question would 

ordinarily be a fundamental set based on a tree of the graph (possibly 

augmented with zero admittance-weight edges). Choosing the other set of 

segs to be a fundamental set based on another tree whose branches are in­

sofar as possible chords of the first tree ensures that the resulting set 

of equations will be a good if not optimum choice. 

The choice of an incidence set of segs as the set Q will always re-

T 
suit in QYQ being optimum or nearly so. If Q is restricted to be a funda­

mental set, algebraic procedures can be followed to find a maximally orthogo­

nal set of segs. These procedures are inefficient in that they require a 
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considerable amount of trial and error, and the improvement in the number 

T T 
of zeros in an optimum QYQ coefficient matrix over an optimum AYA matrix 

•will seldom if ever be worth the labor involved. A network analyst can 

easily learn to determine an optimum set of segs simply by inspection of 

most graphs, however, by learning to recognize distinctive geometric 

T patterns in the graph. Those graphs whose AYA matrices admit of sub­

stantial improvement tend to approach one of the formats shown in 

Figure 6. 

In the event that Q is not restricted to be a fundamental seg matrix, 

the problem becomes considerably more complex. It appears virtually cer­

tain from several aspects that at least one of the maximally orthogonal 

basis sets of segs which can be written for any graph will be a funda­

mental set, but no proof was found for this statement. A purely geometric 

means was found for reducing interlocking segs to non-interlocking ones 

without increasing the adjacency of a basis, however it was not verified 

that this procedure is applicable to all possible cases. 
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VII. APPENDIX 

Linear graph theory not only provides electrical network analysis with 

firm foundations and versatile manipulative tools, but also allows geo­

metric insight to be applied to algebraic processes. It thus often happens 

that algebraic processes can be handled by inspection or nearly so in 

problems studied from a graph-theoretic viewpoint. Such procedures should 

not be considered mere tricks or short-cuts, but rather effectively making 

use of one of the major advantages often accompanying the use of this 

powerful tool. Three procedures of particular interest to the formula­

tion of nodal equations will be given and demonstrated by examples. In 

all cases, the correspondence between graph and electrical network and the 

restrictions imposed on networks will be as they have been throughout this 

investigation. That is, the nodes of the electrical network correspond 

one-to-one with the vertices of the graph and the graph has an edge ad­

joining a vertex pair if there is a current path between the corresponding 

network nodes, and the network is assumed to be reducible to a two-

terminal component representation. 

A. Determining the Node Variables Associated With a Given Set of Segs 

A set of generalized nodal equations may be written in matrix form 

T 
as PYQ V̂  = PI where P and Q are s eg matrices, Y is an element admittance 

matrix, I is a source matrix, and V̂  is the node variable matrix. The 

elements of V̂  are node-pair voltages or sums of node-pair voltages and 

are determined by s eg matrix Q only. Q and V̂  enter into a set of nodal 

T 
equations via what is known as the node transformation, Q V̂  = V̂ , where 

V̂  is the column matrix whose elements are the node-pair voltages 
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associated with each branch of the electrical network. In order that each 

possible node-pair voltage of a network correspond to an edge of the graph 

of the network, it is convenient to assume that a given graph is fully 

connected, that is, that every vertex pair'of the graph is connected by 

an edge. This is no restriction, however, because any graph can be made 

fully connected by augmenting it with zero admittance-weight edges without 

affecting any sets of nodal equations based on that graph. For a graph 

with n vertices the matrix is then a column matrix whose —— 

rows represent every possible node-pair voltage of the network correspond­

ing to the graph. But only n - 1 of these voltages may be independently 

specified, and all remaining voltages must then be expressible as linear 

combinations of the specified voltages. The n - 1 rows of column matrix 

are such an independent set, and the rows of each define 

the particular linear combination of the elements of which is equal to 

the node-pair voltage in the corresponding row of V̂ . In a pictorial 

T 
representation of segs on a geometric graph, each nonzero entry in Q 

corresponds to a seg unavoidably crossing over an edge. The particular 

linear combination of node variables forming any particular node-pair 

voltage is thus explicitly presented schematically. It is this fact that 

allows the rapid determination of node variables from a sketch of segs on 

a graph. 

As examples of the technique, sets of node variables will be found 

for the graphs of Figure 13. The symbol v̂  will be used both to denote 

the î  ̂vertex and to represent the potential of the corresponding network 

node with respect to any arbitrary reference. The node variable associated 
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a 

c 

(a) 

( b )  

Figure 13. Examples used to demonstrate the determination of node 
variables 
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with a s eg will he denoted as By convention, the edge orientation 

is that of the assumed direction of conventional current flow in the cor­

responding network, and so is useful for describing a network branch vol­

tage in terms of a node-pair voltage. The edge orientations do not enter 

into the determination of node variables, however. The orientations 

associated with segs are arbitrary and serve to determine the signs of 

entries in the seg matrix. In Figure 13(a) the voltage across branch ac 

of the circuit will be v̂  - v̂ , and since this node-pair voltage appears 

in only one seg, this must be the node variable associated with that seg. 

The orientation assigned the seg is in the direction from a to c, so 

q̂l ~ ̂ a ~ ̂ c* Similarly, edge cb is cut by seg only, so v̂  ̂= v̂  - v̂  

In the event it had not been noticed that was the only seg separating 

vertex pair cb, one could also utilize vertex pair ab to write 

v̂  - v̂  = v̂  ̂- v̂ g. Substituting the known value of v̂  ̂and rearranging 

results in V „ = (v - V ) - (v - v, ) = v, - v as before. The entire 
q2 a c a b be 

set of node variables will be node-pair voltages if and only if every seg 

is the only seg separating some vertex pair, that is, if the set of segs 

is a fundamental set. 

An example of a non-fundamental set of segs is given in Figure 13(b). 

Seg is found to be the only seg separating vertices b and a and is 

oriented from b to a, so v̂  ̂~ ~ ̂ a* Qg is the only seg separating 

vertices c and b and is oriented from c to b, so v̂  ̂= - v̂ . Similarly 

v̂  ̂= v̂  - v̂ , but q̂  is not the only seg separating any vertex pair. We 

choose any vertex pair separated by q̂ , say vertices d and a, and write 

V ,  - V  = v - + v „ .  S u b s t i t u t i n g  t h e  k n o w n  v a l u e  f o r  v  „  a n d  r e a r r a n g i n g  
d 8. 
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results in Y „ = (v, - v ) + (v, - v ). If vertices c and d had been 
q.3 d  a b e  

chosen, the equation to be solved would have been v, - v = v_-v,, 
d c g3 gl 

which would lead to the same result as before for v If vertices d and 
9.3 

e had been chosen the equation to be solved would have involved three node 

variables but again would lead to the same result. 

B. Determining "Whether Or Not a Given Set of Segs Is Independent 

The determination of whether or not a given set of segs is independent 

may be rapidly accomplished by reducing all the segs to stars, and because 

the independence of a set of segs does not depend on the edge structure 

of a graph, it is convenient to work entirely with vertex sets. It is 

entirely possible that an independent set of segs for a directed graph 

will cease to be independent if the edge orientations are removed, but 

this circumstance is sufficiently rare that the computational advantages 

of modulo 2 algebra justify attempting this approach first. If the modulo 

2 reduction process results in an independent set of stars (one for each 

vertex except for the reference), the original set of segs was independent. 

If in the course of the reduction two segs are made equal then either the 

set of segs is not independent or the set of segs was one which would 

cease to be independent if edge orientations were removed. In the latter 

case one can either use ordinary algebra to effect the reduction process 

or simply inspect the geometric pattern formed by the segs on the graph. 

If a reference vertex is selected and all segs are sketched on the geo­

metric graph as closed contours not containing the reference vertex, then 

all sets of segs which cease to be independent when edge orientations are. 

removed will have a subset giving the appearance of a closed chain. 
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As an example of the process of determining whether a given set of 

segs is independent, consider the graph and set of segs given in Figure 

l4(a). If vertex c is arbitrarily chosen to be reference and all segs 

represented by the vertex set they generate which does not contain c, one 

possible modulo 2 reduction process proceeds as given below. 

"ll 
= def d d d d d 

= ef ef ef ef ef f 

3̂ 
= ad ad a a a a 

= ab ab ab b b b 

S 
= abde abde abe abe e e 

The first column is the initial set of segs. The second column is the 

result of adding (modulo 2) row 2 to row 1 in the first column. Then 

adding row 1 of the second column to rows 3 and 5 of that column results 

in the vertex sets shown in the third column. The procedure is continued 

until an independent set of stars is achieved, thus the initial set of 

segs is independent. 

In the example of Figure l4(b), one modulo 2 reduction process is as 

follows. Vertex d has arbitrarily been chosen to be reference. 

1̂ 
= ac ac 

<̂ 2 = ab be 

% = be be 

Here the modulo 2 reduction process has failed. If the segs are sketched 

as closed contours not containing the reference vertex, it is seen that 

they do indeed form a closed chain. It is thus still possible that this 

set of segs is independent. To verify that it is, an ordinary algebra 
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(a) 

( b )  

Figure l4. Examples used to demonstrate the determination of whether or 
not a given set of segs is independent 
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reduction process is performed as given "below. 

= a + c a + c a + c a + c a 

=  a  +  b  c - b  c - b  c - b  b  

= b + c b + c 2c c c 

The reduction process successfully leads to an independent set of stars, 

hence the original set of segs is an independent set. 

T 
C. Writing the QYE Coefficient Matrix By Inspection 

If the segs of seg sets Q and E are sketched on a graph, the elements 

T 
of the matrix product QYR can be determined directly by inspection if the 

electrical network and graph are as discussed in the beginning of this 

Appendix. The procedure simply amounts to performing the indicated matrix 

T 
operations of QYR visually, and is as follows. Let be an element of 

QYr"̂  and let q_. and r. be the segs represented by the and rows of 
^ J 

Q and R respectively. Then Y.. equals the algebraic sum of admittance 

weights of edges common to and r̂ , where each such edge admittance 

.weight is used with its given sign if q̂  and r̂  are similarly oriented 

with respect to that edge and with its sign reversed if and r̂  are 

oppositely oriented with respect to that edge. 

The graph and sets of segs given in Figure 15 will be used to illus­

trate the procedure. Segs q̂  and r̂  have one edge, be, in common and are 

similarly oriented with respect to be, so Ŷ  ̂= y.̂  ̂where y.̂  ̂is the 

admittance weight of edge be. Segs q̂  and r̂  have edges be and ac in 

common and are oppositely oriented with respect to both, so 

\2 = - ftc - ̂ac-

The continuation of this process results in the matrix below. 
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T QYE = 
'̂ ab' 

- ̂ ao' 

(̂ ac -

(-yea) 

Ki'> 

'̂ od' 

<-3̂ a= - ̂ od' 

th 
In the event that Q and R are chosen to be equal, the i diagonal element 

of QYQ will consist of simply the sum of the weight factors of the edges 
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